Insurance 260 Estimation ReviewPierre Lemaire - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Insurance 260 Estimation ReviewPierre Lemaire

Description:

Maximum Likelihood Estimation. Bayesian Estimation. Matching. Method of Moments ... As n , the probability that the likelihood equation has a solution goes to 1 ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 15
Provided by: alexandr54
Category:

less

Transcript and Presenter's Notes

Title: Insurance 260 Estimation ReviewPierre Lemaire


1
Insurance 260 Review NotesFrequency Estimation
  • Methodologies
  • Maximum Likelihood
  • Poisson Example
  • Negative Binomial Example

2
Methodologies
  • Matching
  • Optimization-Based Estimators
  • Maximum Likelihood Estimation
  • Bayesian Estimation

3
Matching
  • Method of Moments
  • Percentile Matching Method

4
Example
  • Negative Binomial
  • p(k)
  • ?1 r?
  • ?2 r? (1 ?)
  • ?

5
Optimization-Based Estimators
  • Minimum distance estimators
  • Define order statistic x(0) ? x(1) ? ? x(n)
  • then Gn(x) j 1, , n
  • Cramér-von Mises estimators
  • G (x?) F (x?) and wj1
  • Anderson-Darling estimation
  • G (x?) F (x?) and wjF (x?) 1- F (x?)-1

6
Maximum Likelihood Estimation
  • The likelihood function
  • Log-likelihood function
  • 0 for all i

7
MLE for Truncated Data
  • Suppose that we have truncated data such that
  • where n1 n2 n

8
Example Poisson Distribution Fit
  • Details
  • p(k)
  • L(?)
  • l(?)

9
Poisson Distribution Fit
  • 1 Parameter - ?

10
ExampleNegative Binomial Distribution
  • Details
  • p(k)
  • l(?)

11
Neg. Binomial Fit
  • 2 Parameter r, ß

12
Information Matrix
  • Fishers Information Matrix
  • Theorem 1 Variance of MLE
  • Assuming that f(x?) satisfies some conditions,
    then
  • As n ? ?, the probability that the likelihood
    equation has a solution goes to 1
  • As n ? ?, the distribution of the maximum
    likelihood estimator converges to a normal
    distribution with mean ? and variance such that
    I(?) Var(?) ? 1

13
Example The Lognormal Distribution
  • Let ln x N(?, ?2) ?
  • and
  • and
  • and

14
Example The Lognormal Distribution
  • Therefore
Write a Comment
User Comments (0)
About PowerShow.com