Differences and Similarities: Data Warehouse vs Mulitdatabase - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Differences and Similarities: Data Warehouse vs Mulitdatabase

Description:

Extractor/ Monitor. Extractor/ Monitor. Extractor/ Monitor. Architectur Similarities ... Extractor/ Monitor. Extractor/ Monitor. Extractor/ Monitor. Application ... – PowerPoint PPT presentation

Number of Views:685
Avg rating:3.0/5.0
Slides: 20
Provided by: ovegra
Category:

less

Transcript and Presenter's Notes

Title: Differences and Similarities: Data Warehouse vs Mulitdatabase


1
Differences and Similarities Data Warehouse vs
Mulitdatabase
  • Ove Granberg
  • Thomas Sveen

2
Contents
  • Introduction
  • Architecture Differences Similarities
  • Design Differences Similarities

3
Data Warehousing Architecture
Data Warehouse Server
Information Sources
OLAP Servers
Clients
4
Data Warehouse Architecture
  • Characteristics
  • OLAP ? Business analyst
  • Index / join tech
  • Multidimentional space
  • Historical

Clients
5
MDBSs Architecture
  • Query Driven
  • Types
  • Federated
  • Un-federated
  • Distinguises
  • Homogenous / hetrogenous
  • MDBSs ? Autonomy sites

Clients
6
Architectur
Clients
  • Similarities
  • Sources
  • Relational db
  • Heterogenous /homogenous
  • Distributed

Data
  • Differences
  • Dw ? flatt files

Sources
Multidatabase
Data Warehouse
7
Architectur Similarities
Clients
  • Centralized
  • Autonomous sites
  • C/S approach
  • Local users
  • (Local schemas)
  • OLTP

Data

Multidatabase
Data Warehouse
8
Architectur Similarities
Clients
  • External user support

Data

Multidatabase
Data Warehouse
9
Architectur Similarities
Clients
Data
  • Multidatabase

Multidatabase
Data Warehouse
10
Design
  • Data/Database Integration
  • Data modeling

11
Design
  • Data/Database Integration
  • Goal
  • Uniform data model (schema)
  • To steps
  • Schema Translation
  • Schema conflict, Semantic conflict,
  • Schema Integration

12
Data/Database Integration
  • Differences?
  • Data warehouse
  • OLAP
  • Queries are long and complex
  • Historical data
  • Read only
  • Hundreds of users
  • Predictable queries
  • Multidatabase
  • OLTP
  • Many smal transactions
  • Current data
  • Read / Write
  • Tousands of users
  • Unpredictable queries

13
Data/Database Integration
  • Data warehouse
  • In advance, Eager
  • Query
  • Directly
  • Multidatabase
  • On demand, Lazy
  • Query
  • Through global schema

14
Data Warehouse
Queries
Clients
Load phase
Integration phase
Refresh
Extraction/Translation phase
15
MDBS
Queries
Clients
Integration phase
Translation phase
16
Data/Database Integration
  • Advantages
  • Data warehouse
  • High query performance
  • Do not interfere with local processing at the
    sources
  • Historical data
  • Restructure, Adjust data
  • Multidatabase
  • High transaction performance
  • Unpredictable queries
  • Data - Up to date

17
Data/Database Integration
  • Multidatabase
  • Delays
  • Time consuming
  • Competes with local users
  • Poor query capability
  • Disadvantages
  • Data warehouse
  • Data out of date
  • Extra storage space
  • Administrator must specify data that should be
    extracted

18
Data Modeling
  • Data warehouse
  • Dimensonal model
  • Star Schema
  • Snowflake Schema
  • Denormalized
  • Summarized, Adjusted data
  • Matrialized view
  • Multidatabase
  • ER model
  • Normalized
  • Raw data

19
Summary
  • Differences and Similarities
  • Data warehouse vs Multidatabase
  • Database Integration
  • Datamodeling
Write a Comment
User Comments (0)
About PowerShow.com