Title: http:ihome'ust'hkmech101
1- http//ihome.ust.hk/mech101/
- Web-based Interactive Tool for Visualization of
Structural Analysis with Finite Element
Simulation
24-May-2007
MECH 101 Tutorial 12 zhangms_at_ust.hk
3Example 4) in tutorial 8
wo
x
c
A
B
c
L
Find the shear force and bending diagram at any
cross section of the beam.
wo
woL2/3
Step 1) Find the reaction force
woL/2
4Example 4)
For 0ltxltL
x
c
wox/L
woL2/3
M
V
woL/2
c
5Shear and Bending Moment Diagram (IV)
6Example 1)
qo
c
A
B
c
x
L
Derive the equation of deflection, using
second-order differential equation
c
c
B
M
B
A
M
V
V
L-x
c
c
x
7Example 1)
c
B
B
M
V
L-x
c
In this example, select the right part for
analysis will make the calculation easier
8Example 2)
The beam at the right has a constant E1,I1 and is
support by the fixed wall at B and the elastic
rod AC. If the rod has a cross-sectional area A2
and a Youngs modules E2. Find the reaction
force at B and determine the axial force induced
in the rod AC.
Find the reaction force and moment at fixed
support B
wL1
TAc
MB
L1
By
wx
TAc
M(x)
Derive the bending moment M(x)
x
9Example 2)
Take BC b) into Eq.4)
Take into the second-order differential equation
Take BC b) into Eq.3)
Boundary conditions
Solving Eq.5) and 6) yields
Take BC a) into Eq.4)
10Example 3)
Derive the equations of the deflection curve for
an voerhanging heam ABC subjected to a uniform
load of intensity q action on the overhang. Also,
obtain formulas for the deflection and angle
of roatation at the end of the overhang.
q
Governing equation from 0L
A
C
B
L
(½)L
Boundary condition at A, x0,M0, take into Eq,3)
Boundary condition at C, x(3/2)L,V0, take into
Eq.5)
Governing equation from L(3/2)L
Then Eq.6) becomes
11Example 3)
q
Boundary condition at C, x(3/2)L,M0, take into
Eq.7)
A
C
B
Continue Boundary condition at B
L
(½)L
Then write the first order differential equation
Combine Eq.3) and Eq.7) yields
0ltxltL
Lltxlt(3/2)L
12Example 3)
Also use Continue Boundary condition at B
q
A
C
Combine Eq.8) and Eq.9) yields
B
L
(½)L
For the left part 0ltxltL
Then we have
Boundary condition at A, x0,v0, take into
Eq,10)
For the right part Lltxlt(3/2)L
Boundary condition at B, xL,v0, take into
Eq,10)
13Example 3)
q
Boundary condition at B, xL,v0, take into
Eq,11)
A
C
B
Adjust those previous calculation
L
(½)L
0ltxltL
Lltxlt(3/2)L
The rotation angle at C
The deflection at C
14Example 4)
SFx 0
SFy 0
sin2? 2sin?cos?, cos2? (1 cos2?) / 2,
sin2? (1 - cos2?) / 2
Put ? ? 90o
15In-plane principal stresses and plane stress
transformation
(rotation to obtain principal stresses)
(measured from ve x axis to ve x axis)
(ve in counterclockwise direction)
Mohrs Circle
sx
txy
16Example 5)
200 MPa
Determine the resultant state of stress
represented on the element oriented as shown in
the last figure.
60o
y
350 MPa
x
y
?
x
60o
58 MPa
350 MPa
200 MPa
25o
? - 30o (clockwise direction)
sx -200 MPa, sy -350 MPa, txy 0 MPa
-200 (-350) 2
-200 - (-350) 2
sx
cos(-60o) 0 -237.5 MPa
-200 (-350) 2
-200 - (-350) 2
sy -
cos(-60o) 0 -312.5 MPa
-200 - (-350) 2
txy - sin(-60o) 0
64.95 MPa
17END