Title: GDChKolloquium Technische Universitt Mnchen Mnchen, 8' November 2005
1Chemistry in the Non-Scalable Size Regime
Ulrich Heiz, Lehrstuhl für Physikalische Chemie
I Technische Universität München
2Outline
- Introduction- Nanoparticles The scalable size
regime - - Clusters The non-scalable size regime
- Why gold is not noble Low temperature reactivity
- Concepts for understanding reactivity in the
non-scalable size regime - Recent research developments
- Calorimetric studies of the hydrogenation of
1,3-butadien - Cavity ringdown spectroscopy
3Catalytic Process
? Guncatalyzed (GasPhase)
? Gcatalyzed (Surfaces, Particles, Clusters,)
JABIR IBN HAIYAN (Geber) (776 - 803 C.E., Irak)
CO 1/2 O2
Fritz Haber (Geber) (1868-1934)
? G0
GA
CO2
GB
- Catalysts accelerate a chemical process
- After catalytic process the catalyst is in its
initial state - Catalytic processes are characterized by
turn-over of the reaction (Turn-over
frequency)
4Mendelejevs Periodic Table
Mendelejev, Dmitri Ivanovitsj 8. Feb. 1834
(Tobolsk) -2 Feb. 1907 (St.- Petersburg)
In On the Relation of the Properties to the
Atomic Weights of the Elements, received by the
Russian Chemical Society in 1869.
5The 3rd Dimension of the Periodic Table
Size
Periods
Groups
6The Scalable Size Regime Nanoparticles of Sodium
(Nan with ngt2000)
E. Schumacher , U. Heiz et al. Chimia 42 (1988)
357-376
T.P. Martin et al. Z. Phys. D 19 (1991) 25
7Nanoparticles Periodic Table Geometric Shells
1 face added
891-atom octahedron
2 faces added
1156-atom octahedron
N1/3 (10K3-15K211K-3) Mackay
Icosahedra Acta Cryst. 15 (1962) 1916
8Size Effects of Nanoparticles Some Guiding
Principles
- Various facets with different plane
densities ? different reactivities - Different proportions of facets ? influence
on diffusion barriers - Different coordination numbers ? changing
electron densities, edge effects - Substrate effects ? modification at the
interface ? lattice mismatch changing lattice
parameters - Spill-over and reverse spill-over ? particle
size and density dependent
9The Non-Scalable Size Regime Sodium Clusters
(Nan with nlt 150)
de Heer Rev. Mod. Phys. 65 (1993) 611
E. Schumacher, U. Heiz et al. Chimia 42 (1988) 357
10Clusters Periodic Table Electronic Shells
11Cluster Properties
- Distinct, strongly size-dependent, electronic
structures
- Strong impurity doping effects
- Unique and size-dependent, magnetic properties
- Unique structures, non-comparable to crystallites
- Electronic and geometrical structure highly
dependent on oxidation state
- Manifold of energetically close-lying isomers
- Strong structural fluxionality
12Non-Scalable Scalable Size Regime
13Optical Properties Colored Gold
J.-M. Antonietti, U. Heiz et al. Phys. Rev. Lett.
42 (2005) 357
14Impurity Doping Effects
U. Heiz et al. J. Phys. Chem. 100 (1996) 15033
15Charged Clusters
Charging
-
-
Na9Au-
Cs9Au-
U. Heiz et al. J. Phys. Chem. 100 (1996) 15033
16Structural Properties Isomers Structural
Fluxionality
17Changing Reactivity with Cluster Size
CO ½ O2 ? CO2
Chemical reactivity, R One heating cycle,
temperature programmed reaction experiment.
U. Heiz, A. Sanchez, S. Abbet, W.-D.
Schneider Chemical Physics 262 (2000) 189
18Tuning Selectivity with Cluster Size
a) C2 H2 decomposition H2 (hydrogen)
b) C2 H2 hydrogenation C2 H4 (ethylene)
c) C2 H2 polymerization C4H4
cyclotrimerization C6H6 (benzene)
hydrogenation C4H6 (butadiene)
hydrogenation
C4H8 (butene)
19Tuning Selectivity with Cluster Size
20When Gold is not Noble
When Gold is not Noble Structural, Electronic,
and Impurity-Doping Effects in Nanoscale
Chemistry Supported Gold Nanoclusters
Charging Effects on Bonding and Catalyzed
Oxidation of CO on Au8 Clusters on MgO Stéphane
Abbet , Ken Judai, Anke Wörz, Jean-Marie
Antonietti and Ueli Heiz Technical University of
Munich, Lehrstuhl für Physikalische Chemie,
D-85747 Garching Hannu Häkkinen, Bokwon Yoon and
Uzi Landman Georgia Institute of Technology,
School of Physics, Atlanta, Georgia
30332-0430 J. Phys. Chem. A 103 (1999) 9573 J.
Am. Chem. Soc.,125 (2003) 10437 Angewandte
Chemie Int. Ed., 115 (2003) 1335 Science 307
(2005) 403
21Experimental Setup
YAG Laser
Q-mass for size-separation
Analysis chamber
Cluster source
22Experimental Setup Clusters on Surfaces
23Methodology Preparation of Support Materials
Characterization
Preparation
LEED
Oxygen
Oxygen
Magnesium
Magnesium
HREELS
EELS, Ep 30eV
001
010
010
001
Heiz et al. J. Phys. D. Appl. Phys. 33 (2000)
R85-R102
Epitaxially grown on Mo(100) or Ag(001) by
evaporation of Mg in 10-6 Torr O2 at RT.
Detection of F-centers
Wu et al. Chem. Phys. Lett. 182 (1991) 472
Schaffner et al. Surf. Sci. 417 (1998) 159
24Size-Selection and Softlanding
4) Chemical Interaction a) Metal
Clusters/Metal 3-6 eV/Atom b) Metal
Clusters/Oxide 0.2-1.4 eV/Atom
25Experimental Verification of Soft-Landing
- Absence of defect formation on support upon
deposition STM studies of Si39 on Ag(111)
1) Counting the number of atoms
Nickel-carbonyl formation
0.02 ML Ni 2 ML CO
0.02 ML Ni2 2 ML CO
Ni2CO
Ni(CO)4
Ni2
Ni
Ni(CO)4
NiCO
Ni3
Temperature K
Temperature K
26Why is Gold Noble in the Solid State?
Typical DOS of Metals
27Gold Nanocatalysts
Scalable Size Range
Non-Scalable Size Range
SCIENCE, 14 March 2003
28Formation of CO2 on Supported Gold Clusters
291. Guiding Priniciple
Each Atom Counts !
30Comparison to Reactivity of Free Gold Cluster
Anions
Note No O2 adsorption on neutral and cationic
gold clusters !
31Reaction Mechanism of the CO Combustion on Free
Au2-
L. Socaciu, J. Hagen, T. Bernhardt, L. Wöste, U.
Heiz, H. Häkkinen, U. Landman J. AM. CHEM. SOC.
2003, 125, 10437
32Catalytic Turn-Over Frequency (TOF)
TOF ? 0.6 CO2 molecules per gold cluster per
second
2 nm gold particles at 273 K TOF 0.2 s-1 per
Au atom (Haruta et al.) 3.5 nm gold particles at
350 K TOF 4 s-1 per Au atom (Goodman et al.)
332. Guiding Priniciple
Steric Effects For Supported Clusters Charging
34Reactivity of Free and Supported Nanoscale Gold
35Influence of Defect Sites Au8 on MgO(100)
F-centers
CO
O2
F-center Oxygen vacancy
13CO
B. Yoon, H. Häkkinen, U. Landman, A. Wörz, J.-M.
Antonietti, S. Abbet, K. Judai, U. Heiz, Science
307 (2005) 403
36Theoretically Proposed Structure
13CO/Au8/MgO(FC) ?theor. 2018 cm-1
(1) ?theor. 1931 cm-1 (2) ?theor. 2004 cm-1 (3)
?CO/MgO 2118 cm-1
37Influence of Defect Sites Au8 on MgO(100)
Redshift induced by F-center ?? 30-50 cm-1
13CO
38CO bonding on Au8O2/MgO(FC)
CO on Au8O2/MgO 1.18 e-
1.27 e-
39CO bonding on Au8O2/MgO(FC)
CO-bonding via backdonation into 2? and
donation of 5? into cluster
40Effect of F Centers Cluster Charging
CO
O2
Charging ? Frequency shift
? ?exp.(cm-1) 30-50
?Q 0.5
41Effect of F Centers Cluster Stabilization
- Strong binding between cluster and F-center
3.4 eV in comparison to 1.2 eV on regular
terrace sites. - Charge transfer to the cluster 0.5 e-
42CO-Oxidation on Aun on TiO2
433. Guiding Priniciple
Cluster-Support-Interaction - Stabilization -
Charging
44Why is Gold Active at low Temperatures ?
45Effect of F centers Activation of O2 (peroxo
state)
46Comparison with Gas Phase Studies
Stolcic, Fischer, Ganteför, Kim, Sun and Jena J.
Am. Chem. Soc. 125, (2003) 2848
47Experimental Evidence of Molecular O2 Adsorption
Stolcic, Fischer, Ganteför, Kim, Sun and Jena J.
Am. Chem. Soc. 125, 2848 (2003)
484. Guiding Priniciple
Unique Activation of Reactants on Clusters !
49Identification of possible Reaction Mechanisms
50Oxidation of CO on Au8 Bound to Defect-Poor and
Defect-Rich MgO(100) Surfaces
Langmuir-Hinshelwood-Periphery Mechanism
Adsorption by reverse spill- over
4.5 Å
2.0 Å
Reaction Coordinate d(C-O1)
A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider,
H. Ha1kkinen, R. N. Barnett, Uzi Landman J.
Phys. Chem. A 1999, 103, 9573
51Oxidation of CO on Au8 Bound to Defect-Poor and
Defect-Rich MgO(100) Surfaces
Langmuir-Hinshelwood-Top Mechanism
Direct Adsorption
3.1 Å
2.0 Å
Reaction Coordinate d(C-O1)
52Dynamic Structural Fluxionality
Au8 2 CO2
Au8/O2/(CO)2
Au8 O2 2 CO
Au8/O2
Bicapped Bipyramid
Bicapped Bipyramid
Quasi planar Au8
Energy
Reaction Coordinate
53Dynamic Structural Fluxionality
545. Guiding Principle
Dynamic Structural Fluxionality
55Evolution of Reactivity with Size and Elemental
Composition
Size evolution
56Activation by Impurity DopingUnderstanding
Size-Evolution of the Reaction
57Gold Cluster Reactivity
Cluster deposition of FC/MgO(100)
- Au8 smallest gold catalyst
- Au3Sr smallest doped cluster
- Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H.
Häkkinen, R. N. Barnett and U. LandmanWhen gold
is not noble Nano-scale gold catalyst.J. Phys.
Chem. A 103 9573-9578 (1999) - H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, and
U. LandmanStructural, electronic, and
impurity-doping effects in nanoscale chemistry
Supported gold nanoclusters.Angewandte Chemie
Int. Ed., 42 1297-1300 (2003)
58Optimized Atomic Structures of Pure and Mixed
Gold Nanocatalysts
B.E. 3.5 eV ?q0.5
B.E. 2.7 eV ?q0.3
B.E. 4.1 eV ?q0.3
B.E. 0.7 eV rO2 1.44 Å
B.E. 1.9 eV rO2 1.37 Å
B.E. 0.2 eV rO2 1.28 Å
Peroxo
Superoxo
Molecular
59Au8/Mg(100)/FC LDOS Projected on the O2
Molecule and the Metal Part
60Au4, Au3Sr/Mg(100)/FC LDOS Projected on the O2
Molecule and the Metal Part
616. Guiding Principle
Electronic Structure (Au8, Au4, Au3Sr) Impurity
Doping Effects
62The Role of Moisture
63The Effect of Moisture on Gold Catalysts
64Mechanism Predicted by Theory
Angelo Bongiorno Uzi Landman Phys. Rev. Lett.
95, 1061021 (2005)
65Cooperative Adsorption of H2O and O2
667. Guiding Principle
Cooperative Adsorption and Activation by
Coadsorbants
67Mechanism 1 Proposed by Landman
68Nanocatalytic Factors
- Each cluster has its characteristic electronic
structure Intrinsic quantum size effects - Each cluster size has characteristic
cluster-support interaction (stability, mobility,
charging, steric effects ...) - Clusters are fluxional Low-temperature
reactivity
69Understanding Chemical and Photochemical
Properties in the Non-Scalable Size Regime
Reactivity and Kinetics
Identification of reactants, intermediates and
products p-MBRS, TPR, FTIR Reaction
mechanisms Theory Activation energies
Photochemistry Femtochemistry
Morphology and Structure Thermal and
Photo-Stability
Electronic Structure and Photoabsorption
Size-dependence Optical Spectroscopy (CRDS) Role
of the substrate Electron Spectroscopy
(MIES) Influence of adsorbates Photoelectron
Spectroscopy (UPS)
Geometric Structure and Stability
Morphology and Structure Thermal and
Photo-Stability
Local Probes (AFM/STM)
70Thermodynamic properties of cluster reactions
OFF
71Microcalorimetry - Principle
Al
Au
P
Au10nm Cr
Concept Ch. Gerber, J. K. Gimzewski, R.
Schäfer See e.g. J. Chem. Phys. 65 (1999), 10008
72Microcalorimetry - Principle
Mode of application Thermometer Cantilever in
contact with heat bath, constant
temperature Sensitivity 10-3 K
Calorimeter Cantilever in contact with
heat sink, heat sink at T0, heat from an external
source flows along the cantilever Sensitivi
ty 100 nWatt
73Clusterdeposition Heats of adsorption
Heat rate during cluster deposition Thermometer
Mode
The heating rate has been corrected by the
heating of the cantilever through the focusing
octopole ion guide.
74Clusterdeposition Heats of adsorption
Heating rate 6.36 x 10-8 K s-1 pA-1 Heat
capacity of array 0.07 mJ K-1 Q c ? ?T P
?Q/?t c ? ?T/ ?t ? Power released during
cluster deposition 4.45 x 10-12 W pA-1 ?
Average power released by cluster impact 4.45
eV 1 eV originates from kinetic energy, thus
3.5 eV is due to binding and rearrangment of
cluster upon deposition
75Microcalorimetry Mechanical response
Mass Spectro
76Microcalorimetry Reaction Heats
Reaction heat of the hydrogenation of
1,3-butadiene on 1 ML Pdn clusters - Isotropic
partial pressure of 1,3-butadiene - H2 pulses
77Nanocalorimetry Reaction Heats
Hydrogenation of 1,3-butadiene on Pdn
Pressure dependence of the hydrogenation of
1,3-butadiene on palladium cluster model
catalysts. Pdn clusters (mean size n20,
equivalent atomic coverage 1) are deposited on
the cantilever. An isotropic pressure of
1,3-butadiene is introduced in the chamber. H2 is
pulsed at 1 Hz.
Reaction heat of the hydrogenation of
1,3-butadiene on 1 ML Pdn clusters - Isotropic
partial pressure of 1,3-butadiene - H2 pulses
78Estimation of Reaction Heat
Pdn
Reaction C4H6 H2 ? C4H8 C4H8 H2 ? C4H10
Pdn
Measured heat (peak value) 2,5x10-9 J Cluster
coverage 1 ML (2x1013 clusters/cm2 )
clusters on cantilever (7,5x10-4 cm2) 1,5x1010
clusters Assuming one reaction cycle per cluster
? 1.5x10-19 J ?? 1eV ? 100 kJ/mol
79Cavity Ringdown Spectroscopy Principle
- ?0 Intrinsic loss of the cavity (transmission of
the mirror, surface scattering, ) - ?s Additional loss due to the absorption of
light by the sample
80Ringdown Time and Sensitivity
- Absorption losses of about 0.5 ppm are detectable
- A typical dipole-allowed transition in small
noble metal clusters (0.1 Å2) can be detected
with a coverage of 0.005 ML
81Integration into Cluster Deposition Machine
82Size-Dependent Optical Properties
J.-M. Antonietti et al., Phys. Rev. Lett. 94
(2005), 213402 A. Del Vitto et al., accepted for
publication in J. Phys. Chem. B
83Optical Spectra of Au1 and Au2/a-SiO2
84Aggregation and Fragmentation
85Thank You
Present team Dr. M. Arenz (Reactivity of
supported metal clusters) Dr. S. Abbet (formar
collaborator) Dr. K. Judai (formar
collaborator) Dipl. chem. A. Wörz Dipl. chem. M.
Röttgen Dr. J.-M. Antonietti (Microcalorimetry)
Dipl. phys. J. Gong Ms. Sci. V. Habibpour Dr. S.
Gilb (Cavity ring-down spectroscopy,
Microcalorimetry) Dr. M. Michalski Dipl. Chem. J.
Kungl Ms. Sci. A. Kartouzian Dipl. phys. V.
Teslenko (Metastable impact spectroscopy)
Present collaborations Prof. N.
Rösch (Simulations) Prof. U. Landman (Simulati
ons) Dr. H. Häkkinen Prof. G. Pacchioni
coworkers (Simulations) Prof. C. Henry (Pulsed
molecular beams) Prof. L. Wöste (Gas phase
reactivities) Dr. Th. Bernhardt Prof. V.
Kempter (Metastable impact spectroscopy) Prof.
H. Jones (Cavity ring-down spectroscopy) Fundi
ng Deutsche Forschungsgemeinschaft, Sonderforschu
ngsbereich SFB 569 SPP Cluster in Kontakt mit
Oberflächen (1153), Hochschulbau
Förderung Landesstiftung Baden-Württemberg,
Alexander v. Humboldt Stiftung Japanese
Society for the Promotion of Science, Swiss
National Science Foundation