Title: Infinite hierarchies of conformonP systems
1Infinite hierarchies of conformon-P systems
Pierluigi Frisco School of Mathematical and
Computer Sciences Heriot-Watt University Edinburgh
UK
WMC2006, Leiden 17-21/7/2006
2Conformon-P systems
X
Z
1
2
Y
Z
3
W
4
3Conformon-P systems
G, 5 R, 9 G, 2
G, 5 G, 2 ?r R, 9 R, 12
4Conformon-P systems example
1
2
? 1
G, 4
4
3
G ? R
4
3
5Conformon-P systems example
1
2
? 1
G, 1
4
3
G ? R
4
3
6Conformon-P systems example
1
2
? 1
R, 0
R, 0
R, 3
G, 1
4
3
G ? R
4
3
7Conformon-P systems example
1
2
? 1
R, 0
R, 0
R, 0
G, 4
4
3
G ? R
4
3
8Conformon-P systems example
1
2
? 1
R, 0
R, 0
R, 0
4
G, 4
3
G ? R
4
3
9Conformon-P systems example
1
2
? 1
R, 0
R, 3
R, 0
4
G, 1
3
G ? R
4
3
10Conformon-P systems example
1
2
? 1
R, 0
R, 0
R, 3
4
G, 1
3
G ? R
4
3
11Conformon-P systems example
1
2
? 1
R, 0
R, 0
G, 4
R, 3
4
3
G ? R
4
3
12Conformon-P systems example
1
2
? 1
R, 0
R, 0
R, 3
4
3
G ? R
4
3
G, 4
13Conformon-P systems module
R, 2
14Conformon-P systems modules
only conformon A, ?, ? ? N can pass from
membrane 1 to membrane 2.
1
2
A, ?
?
a conformon with name A can interact with B
passing ? only if the value of A and B before the
interaction is ? and ? respectively, ?, ?, ? ? N.
A(?) ? B(?)
?
A ? B(?)
?
A(?) ? B
15Counter machines
...
15
0
3
counters c1 c2 cn
states A, B, C, ..., Z
instructions
(A, c2, B) (A, c1-, V, W) (Z, halt)
16Restricted counter machines
...
15
0
3
counters c1 c2 cn
states A, B, C, ..., Z
instructions
(A, c2, B) (A, c1-, V, W) (Z, halt)
(A, c2, c5-, B) (A, c1-, c2, V, W)
O. H. Ibarra. On membrane hierarchy in P systems.
Theoretical Computer Science, 334115-129, 2005.
17Conformon-restricted basic conformon-P systems
Basic conformon-P systems (any conformon has a
finite number of occurrences) having a conformon
with a distinguished name, let us say c, and such
that one some (input) membranes contain only c
conformons in the initial configuration.
18Simulation (A, c2, c5-, B)
2
3
1
x, 1
c2, 5
sA, 30
sB, 0
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
5
2
c5, 7 c ? sB(28)
? 30
19Simulation (A, c2, c5-, B)
2
3
1
x, 1
c2, 5
sA, 9
sB, 21
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
5
2
c5, 7 c ? sB(28)
? 30
20Simulation (A, c2, c5-, B)
2
3
1
x, 1
c2, 5
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
sB, 21
9
? 0
4
19
sA, 9
? 28
5
2
c5, 7 c ? sB(28)
? 30
21Simulation (A, c2, c5-, B)
2
3
1
x, 3
c2, 5
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
sB, 19
9
? 0
4
19
sA, 9
? 28
5
2
c5, 7 c ? sB(28)
? 30
22Simulation (A, c2, c5-, B)
2
3
1
c2, 5
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
x, 3
9
? 0
4
19
sA, 9
? 28
sB, 19
5
2
c5, 7 c ? sB(28)
? 30
23Simulation (A, c2, c5-, B)
2
3
1
c2, 7
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
x, 1
9
? 0
4
19
sA, 0
? 28
sB, 28
5
2
c5, 7 c ? sB(28)
? 30
24Simulation (A, c2, c5-, B)
2
3
1
sA, 0
x, 1
c2, 7
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
5
2
c5, 7 c ? sB(28)
? 30
sB, 28
25Simulation (A, c2, c5-, B)
2
3
1
sA, 0
x, 1
c2, 7
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
5
2
c5, 5 c ? sB(28)
? 30
sB, 30
26Simulation (A, c2, c5-, B)
2
3
1
sA, 0
sB, 30
x, 1
c2, 7
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
5
2
c5, 5 c ? sB(28)
? 30
27Deterministic simulation
(A, c2, c5-, B)
28Simulation (A, c2, c5-, B)
2
3
1
x, 1
c2, 5
sA, 30
sB, 0
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
5
- fluctuations of the sum of the
values of the c conformons
2
c5, 7 c ? sB(28)
? 30
29Simulation (A, c2, c5-, B)
2
3
1
x, 1
c2, 5
sA, 30
sB, 0
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
- deterministic simulation
- fluctuations of the sum of the values of the c
conformons
5
2
c5, 7 c ? sB(28)
? 30
30Simulation (A, c2, c5-, B)
2
3
1
c2, 7
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
x, 1
9
? 0
4
19
sA, 0
? 28
- deterministic simulation
- fluctuations of the sum of the values of the c
conformons
sB, 28
5
2
c5, 7 c ? sB(28)
? 30
31Simulation (A, c2, c5-, B)
2
3
1
sA, 0
x, 1
c2, 7
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
- deterministic simulation
- fluctuations of the sum of the values of the c
conformons
5
2
c5, 5 c ? sB(28)
? 30
sB, 30
32Simulation (A, c2, c5-, B)
2
3
1
x, 1
c2, 5
sA, 30
sB, 0
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
- deterministic simulation
- fluctuations of the sum of the values of the c
conformons
5
2
c5, 7 c ? sB(28)
? 30
- presence of connected loops.
33Simulation (A, c2, c5-, B)
2
3
1
x, 1
c2, 5
sA, 30
sB, 0
3
21
2
2
sB(21) ? x(1)
x ? c2
x, 1
9
? 0
4
19
? 28
- deterministic simulation
- fluctuations of the sum of the values of the c
conformons
5
2
c5, 7 c ? sB(28)
? 30
- presence of connected loops.
34Conformon-restricted basic conformon-P systems
Basic conformon-P systems (any conformon has a
finite number of occurrences) having a conformon
with a distinguished name, let us say c, and such
that one some (input) membranes contain only c
conformons in the initial configuration.
... to put the c conformons in different input
membranes seems to be a must ...
Theorem 1 conformon-restricted basic
conformon-P systems induce an infinite
hierarchy on the number of membranes.
35Theorem 1 proof
36Membrane-restricted basic conformon-P systems
Basic conformon-P systems (any conformon has a
finite number of occurrences) in which the number
of input membrane is restricted to one and the
set of names of input conformons is bounded.
... to have as many different names of input
conformons as many counters in the simulated
restricted counter machine seems to be a must ...
Theorem 2 membrane-restricted basic conformon-P
systems induce an infinite hierarchy on the
number of input conformons.
37Final remarks
- maximal parallelism is not necessary to obtain
infinite hierarchies
- is it possible to have deterministic conformon-P
systems?
38Final remarks
- maximal parallelism is not necessary to obtain
infinite hierarchies
- is it possible to have deterministic conformon-P
systems?
- loops as measure of complexity
39Final remarks
- maximal parallelism is not necessary to obtain
infinite hierarchies
- is it possible to have deterministic conformon-P
systems?
- loops as measure of complexity
... to put the c conformons in different input
membranes seems to be a must ...
... to have as many different names of input
conformons as many counters in the simulated
restricted counter machine seems to be a must ...
40(No Transcript)