Title: Phase%20transitions%20in%20femtosecond%20laser%20ablation
1Phase transitions in femtosecond laser ablation
M. Povarnitsyn, K. Khishchenko, P.
Levashov Joint Institute for High Temperatures
RAS, Moscow, Russia povar_at_ihed.ras.ru
E-MRS 2008 Spring Meeting Strasbourg, France 27
May, 2008
2Outline
- Introduction
- Setup parameters
- Mechanisms of ultrashort laser ablation
- Numerical model
- Basic equations
- Equation of state (EOS)
- Thermal decomposition model (homogeneous
nucleation) - Mechanical decomposition model (cavitation)
- Results
- Dynamics of ablation
- Analysis of phase states
- Sensitivity to EOS
- Conclusions and future plans
3Setup parameters
? 0.8 mkm, ?L 100 fs, ( FWHM ) F 0.1?10
J/cm2 Single pulse, Gaussian profile
targets Al, Au, Cu, Ni
laser
- Actual questions
- Heat affected zone (melted zone)
- Shock wave formation
- Parameters of the plume
- Cavitation and fragmentation
- Generation of nanoclusters
- Ablation depth vs. laser fluence
4Stages of ultrashort ablation
1. Pulse ?L 100 fs
t 0
10 nm
2. Energy absorption by conduction band
electrons
t lt 1 ps
3. Heat conductivity electron-lattice
collisions
100 nm
V gt 10 km/s
t 5 ps
4. Thermal decomposition and SW and RW
generation
RW
SW
V 1 km/s
t gt 10 ps
RW
5. Mechanical fragmentation
V lt 1 km/s
t 100 ps
5Two-temperature multi-materialEulerian
hydrodynamics
Basic equations
Mixture model
6Two-temperature semi-empirical EOS
Stable EOS
Metastable EOS
bn
bn
bn
sp
unstable
kinetic models
7Thermal decomposition of metastable liquid
Metastable liquid separation into liquid-gas
mixture
unstable
dP/dt -(P-Peq)/?M dT/dt -(T-Teq)/?T
8Model of homogeneous nucleation
0.9TcltTltTc
unstable
V.P. Skripov, Metastable Liquids (New York
Wiley, 1974).
9Mechanical spallation (cavitation)
P
P
P
unstable
liquid voids
Time to fracture is governed by the confluence of
voids
10Spallation criteria
Minimal possible pressure
P lt -Y0
Energy minimization
D. Grady, J. Mech. Phys. Solids 36, 353 (1988).
11Dynamics of ablation of Al target
F 5 J/cm2
?
?
P
P
?
M
T
?
P
P
M. E. Povarnitsyn et al. Phys. Rev. B 75, 235414
(2007).
12Results with stable and metastable EOS
F 5 J/cm2
(l)
unstable
13Ablation of Al target
14Ablation of Au target
15Ablation of Cu target
16Ablation of Ni target
17Ablation depth vs. fluence
Experiment M. Hashida et al. SPIE Proc. 4423,
178 (2001). J. Hermann et al. Laser Physics
18(4), 374 (2008).
18Mechanisms of ablation
unstable
Y. Hirayama, M. Obara Appl. Surf. Science
197-198 (2002)
19Conclusions and outlook
- Simulation results are sensitive to the models
used absorption, thermal conductivity,
electron-lattice collisions, kinetics of
nucleation, fragmentation criteria, EOS, etc - Time-dependent criteria of phase explosion and
cavitation in metastable liquid state were
introduced into hydrodynamic model - Usage of metastable and stable EOS allows to
take into account kinetics of metastable liquid
decomposition - Observed mechanisms of ablation
- thermal decomposition in the vicinity of critical
point - cavitation in liquid phase at high strain rate
and negative pressure - Ablation depth correlates with the melted depth
- Kinetics of melting is in sight