Title: DCM%20for%20evoked%20responses
1DCM for evoked responses
- Ryszard Auksztulewicz
- SPM for M/EEG course, 2014
2Does network XYZ explain my data better than
network XY?
?
input
input
3Does network XYZ explain my data better than
network XY?Which XYZ connectivity structure
best explains my data?
?
input
input
4Does network XYZ explain my data better than
network XY?Which XYZ connectivity structure
best explains my data?Are X Y linked in a
bottom-up, top-down or recurrent
fashion?
?
input
input
5Does network XYZ explain my data better than
network XY?Which XYZ connectivity structure
best explains my data?Are X Y linked in a
bottom-up, top-down or recurrent fashion?Is my
effect driven by extrinsic or intrinsic
connections?
?
context
input
6Does network XYZ explain my data better than
network XY?Which XYZ connectivity structure
best explains my data?Are X Y linked in a
bottom-up, top-down or recurrent fashion?Is my
effect driven by extrinsic or intrinsic
connections?Which neural populations are
affected by contextual factors?
?
context
input
7Does network XYZ explain my data better than
network XY?Which XYZ connectivity structure
best explains my data?Are X Y linked in a
bottom-up, top-down or recurrent fashion?Is my
effect driven by extrinsic or intrinsic
connections?Which neural populations are
affected by contextual factors?Which
connections determine observed frequency
coupling?
?
context
input
8Does network XYZ explain my data better than
network XY?Which XYZ connectivity structure
best explains my data?Are X Y linked in a
bottom-up, top-down or recurrent fashion?Is my
effect driven by extrinsic or intrinsic
connections?Which neural populations are
affected by contextual factors?Which
connections determine observed frequency
coupling?How changing a connection/parameter
would influence data?
?
context
input
9The DCM analysis pathway
Build model(s)
Fit your model parameters to the data
Pick the best model
Make an inference (conclusion)
Collect data
10The DCM analysis pathway
Build model(s)
Fit your model parameters to the data
Pick the best model
Make an inference (conclusion)
Collect data
11Data for DCM for ERPs / ERFs
- Downsample
- Filter (e.g. 1-40Hz)
- Epoch
- Remove artefacts
- Average
- Per subject
- Grand average
- Plausible sources
- Literature / a priori
- Dipole fitting / 3D source reconstruction
12The DCM analysis pathway
Build model(s)
Fit your model parameters to the data
Pick the best model
Make an inference (conclusion)
Collect data
13The DCM analysis pathway
Hardwired model features
Build model(s)
Fit your model parameters to the data
Pick the best model
Make an inference (conclusion)
Collect data
14Models
15Neuronal (source) model
Â
Kiebel et al., 2008
16NEURAL MASS MODEL
CANONICAL MICROCIRCUIT
Pyr
Inhib Inter
L2/3
xv
Spiny Stell
Spiny Stell
mv
L4
Inhib Inter
Pyr
Pyr
L5/6
spm_fx_cmc
spm_fx_erp
17Canonical Microcircuit Model (CMC)
Output equation
Supra-granular Layer
Granular Layer
Infra-granular Layer
Pinotsis et al., 2012
18Canonical Microcircuit Model (CMC)
Bastos et al. (2012) Pinotsis et al.
(2012)
19Canonical Microcircuit Model (CMC)
Supra- granular Layer
Granular Layer
Infra-granular Layer
20Canonical Microcircuit Model (CMC)
Inhibitory Interneurons
Superficial Pyramidal Cells
Supra-granular Layer
Spiny Stellate Cells
Granular Layer
Infra-granular Layer
Deep Pyramidal Cells
Pinotsis et al., 2012
21Canonical Microcircuit Model (CMC)
Inhibitory Interneurons
Superficial Pyramidal Cells
Supra-granular Layer
Spiny Stellate Cells
Granular Layer
Infra-granular Layer
Deep Pyramidal Cells
Pinotsis et al., 2012
22Canonical Microcircuit Model (CMC)
Inhibitory Interneurons
Superficial Pyramidal Cells
Supra-granular Layer
Spiny Stellate Cells
Granular Layer
Infra-granular Layer
Deep Pyramidal Cells
Pinotsis et al., 2012
23Canonical Microcircuit Model (CMC)
Inhibitory Interneurons
Superficial Pyramidal Cells
Supra-granular Layer
Spiny Stellate Cells
Granular Layer
Infra-granular Layer
Deep Pyramidal Cells
Pinotsis et al., 2012
24Canonical Microcircuit Model (CMC)
Inhibitory Interneurons
Superficial Pyramidal Cells
Supra-granular Layer
Spiny Stellate Cells
Granular Layer
Infra-granular Layer
Deep Pyramidal Cells
Pinotsis et al., 2012
25Canonical Microcircuit Model (CMC)
Inhibitory Interneurons
Superficial Pyramidal Cells
Supra-granular Layer
Spiny Stellate Cells
Granular Layer
Infra-granular Layer
Deep Pyramidal Cells
Pinotsis et al., 2012
26Canonical Microcircuit Model (CMC)
Inhibitory Interneurons
Superficial Pyramidal Cells
Supra-granular Layer
Spiny Stellate Cells
Granular Layer
Infra-granular Layer
Deep Pyramidal Cells
Pinotsis et al., 2012
27Canonical Microcircuit Model (CMC)
Inhibitory Interneurons
Superficial Pyramidal Cells
Supra-granular Layer
Spiny Stellate Cells
Granular Layer
Infra-granular Layer
Deep Pyramidal Cells
Pinotsis et al., 2012
28Canonical Microcircuit Model (CMC)
Voltage change rate f(current) Current change
rate f(voltage,current)
Pinotsis et al., 2012
29Canonical Microcircuit Model (CMC)
Voltage change rate f(current) Current change
rate f(voltage,current)
H, t Kernels pre-synaptic inputs -gt
post-synaptic membrane potentials H max PSP
t rate constant S Sigmoid operator PSP -gt
firing rate
David et al., 2006 Pinotsis et al., 2012
30Canonical Microcircuit Model (CMC)
Supra-granular Layer
Granular Layer
Infra-granular Layer
Pinotsis et al., 2012
31The DCM analysis pathway
Hardwired model features
Build model(s)
Fit your model parameters to the data
Pick the best model
Make an inference (conclusion)
Collect data
325
4
3
2
1
335
4
3
2
1
Input
345
4
3
2
1
Input
355
4
3
2
1
Input
365
4
3
2
1
Input
37Factor 1
5
4
3
2
1
Input
38Factor 1
Factor 2
5
4
3
2
1
Input
39The DCM analysis pathway
Fixed parameters
Build model(s)
Fit your model parameters to the data
Pick the best model
Make an inference (conclusion)
Collect data
40Fitting DCMs to data
41Fitting DCMs to data
H. Brown
42Fitting DCMs to data
H. Brown
43Fitting DCMs to data
H. Brown
44Fitting DCMs to data
- Check your data
- Check your sources
H. Brown
45Fitting DCMs to data
- Check your data
- Check your sources
- Check your model
IPL
IPL
V4
V4
Model 2
H. Brown
46Fitting DCMs to data
- Check your data
- Check your sources
- Check your model
- Re-run model fitting
H. Brown
47The DCM analysis pathway
Fixed parameters
Build model(s)
Fit your model parameters to the data
Pick the best model
Make an inference (conclusion)
Collect data
48Does network XYZ explain my data better than
network XY?Which XYZ connectivity structure
best explains my data?Are X Y linked in a
bottom-up, top-down or recurrent fashion?Is my
effect driven by extrinsic or intrinsic
connections?Which connections/populations are
affected by contextual factors?
?
context
input
49Example 1 Architecture of MMN
Garrido et al., 2008
50Example 2 Role of feedback connections
Garrido et al., 2007
51Example 3 Group differences
Boly et al., 2011
52Example 4 Parametric effects
Auksztulewicz Blankenburg, 2013
53Auksztulewicz Blankenburg, 2013
54Auksztulewicz Blankenburg, 2013
55Example 5 Specific CMC populations
Moran et al., 2013
56Motivate your assumptions!
Rubbish data
Perfect model
Rubbish results
Perfect data
Rubbish model
Rubbish results
57Thank you!
- Karl Friston
- Gareth Barnes
- Andre Bastos
- Harriet Brown
- Jean Daunizeau
- Marta Garrido
- Stefan Kiebel
- Vladimir Litvak
- Rosalyn Moran
- Will Penny
- Dimitris Pinotsis
- Bernadette van Wijk