Title: Logic%20synthesis%20from%20concurrent%20specifications
1Logic synthesis from concurrent specifications
- Jordi Cortadella
- Universitat Politecnica de CatalunyaBarcelona,
Spain
In collaboration with M. Kishinevsky, A.
Kondratyev, L. Lavagno and A. Yakovlev
2Outline
- Overview of the synthesis flow
- Specification
- State graph and next-state functions
- State encoding
- Implementability conditions
- Speed-independent circuit
- Complex gates
- C-element architecture
- Review of some advanced topics
3Book and synthesis tool
- J. Cortadella, M. Kishinevsky, A. Kondratyev,L.
Lavagno and A. Yakovlev,Logic synthesis for
asynchronouscontrollers and interfaces,Springer-
Verlag, 2002 - petrifyhttp//www.lsi.upc.es/petrify
4Design flow
Specification(STG)
Reachability analysis
State Graph
State encoding
SG withCSC
Boolean minimization
Next-state functions
Logic decomposition
Decomposed functions
Technology mapping
Gate netlist
5Specification
x
x
y
y
z
z
x-
z
x
y
z-
y-
Signal Transition Graph (STG)
6Token flow
7State graph
8Next-state functions
9Gate netlist
x
y
z
10Design flow
Specification(STG)
Reachability analysis
State Graph
State encoding
SG withCSC
Boolean minimization
Next-state functions
Logic decomposition
Decomposed functions
Technology mapping
Gate netlist
11VME bus
Bus
Data Transceiver
Device
D
LDS
DSr
VME Bus Controller
DSw
LDTACK
DTACK
12STG for the READ cycle
DTACK-
DSr
LDS
LDTACK
D
DTACK
DSr-
D-
LDS-
LDTACK-
D
LDS
DSr
VME Bus Controller
LDTACK
DTACK
13Choice Read and Write cycles
DSr
DSw
LDS
D
LDTACK
LDS
D
LDTACK
DTACK
D-
DSr-
DTACK
D-
DSw-
14Choice Read and Write cycles
15Circuit synthesis
- Goal
- Derive a hazard-free circuitunder a given delay
model andmode of operation
16Speed independence
- Delay model
- Unbounded gate / environment delays
- Certain wire delays shorter than certain paths in
the circuit - Conditions for implementability
- Consistency
- Complete State Coding
- Persistency
17Design flow
Specification(STG)
Reachability analysis
State Graph
State encoding
SG withCSC
Boolean minimization
Next-state functions
Logic decomposition
Decomposed functions
Technology mapping
Gate netlist
18STG for the READ cycle
DTACK-
DSr
LDS
LDTACK
D
DTACK
DSr-
D-
LDS-
LDTACK-
D
LDS
DSr
VME Bus Controller
LDTACK
DTACK
19Binary encoding of signals
DSr
DTACK-
LDS
LDTACK-
LDTACK-
LDTACK-
DSr
DTACK-
LDS-
LDS-
LDS-
LDTACK
DSr
DTACK-
D
D-
DSr-
DTACK
20Binary encoding of signals
DSr
DTACK-
10000
LDS
LDTACK-
LDTACK-
LDTACK-
DSr
DTACK-
10010
LDS-
LDS-
LDS-
LDTACK
DSr
DTACK-
10110
01110
10110
D
D-
DSr-
DTACK
(DSr , DTACK , LDTACK , LDS , D)
21Excitation / Quiescent Regions
22Next-state function
0 ? 1
0 ? 0
1 ? 1
1 ? 0
23Karnaugh map for LDS
LDS 1
LDS 0
-
-
-
0
1
-
0
1
-
-
-
-
-
-
-
-
1
1
1
-
-
-
-
-
0
0
0
0
0
0/1?
-
-
24Design flow
Specification(STG)
Reachability analysis
State Graph
State encoding
SG withCSC
Boolean minimization
Next-state functions
Logic decomposition
Decomposed functions
Technology mapping
Gate netlist
25Concurrency reduction
LDS
LDS-
LDS-
LDS-
10110
10110
26Concurrency reduction
DTACK-
DSr
LDS
LDTACK
D
DTACK
DSr-
D-
LDS-
LDTACK-
27State encoding conflicts
LDS
LDTACK-
LDS-
LDTACK
10110
10110
28Signal Insertion
LDTACK-
LDS
LDS-
LDTACK
101101
101100
D-
DSr-
29Design flow
Specification(STG)
Reachability analysis
State Graph
State encoding
SG withCSC
Boolean minimization
Next-state functions
Logic decomposition
Decomposed functions
Technology mapping
Gate netlist
30Complex-gate implementation
31Implementability conditions
- Consistency
- Rising and falling transitions of each signal
alternate in any trace - Complete state coding (CSC)
- Next-state functions correctly defined
- Persistency
- No event can be disabled by another event (unless
they are both inputs)
32Implementability conditions
- Consistency CSC persistency
- There exists a speed-independent circuit that
implements the behavior of the STG(under the
assumption that ay Boolean function can be
implemented with one complex gate)
33Persistency
a
c
b
is this a pulse ?
Speed independence ? glitch-free output behavior
under any delay
34(No Transcript)
35ER(d)
ER(d-)
36ab
cd
00
01
11
10
0
0
0
0
00
1
0
01
1
1
1
1
11
1
10
Complex gate
37Implementation with C elements
? S ? z ? S- ? R ? z- ? R- ?
- S (set) and R (reset) must be mutually exclusive
- S must cover ER(z) and must not intersect
ER(z-) ? QR(z-) - R must cover ER(z-) and must not intersect
ER(z) ? QR(z)
38ab
cd
00
01
11
10
0
0
0
0
00
1
0
01
1
1
1
1
11
1
10
S
d
C
R
39ab
cd
00
01
11
10
0
0
0
0
00
1
0
01
1
1
1
1
11
1
10
S
d
C
R
Monotonic covers
40C-based implementations
S
c
d
d
C
C
R
b
a
c
weak
c
d
weak
d
a
a
b
generalized C elements (gC)
41Speed-independent implementations
- Implementability conditions
- Consistency
- Complete state coding
- Persistency
- Circuit architectures
- Complex (hazard-free) gates
- C elements with monotonic covers
- ...
42Synthesis exercise
1011
0011
0111
Derive circuits for signals x and z (complex
gates and monotonic covers)
43Synthesis exercise
1011
wx
yz
00
01
11
10
-
1
1
0
00
0011
-
1
1
0
01
-
0
0
0
11
-
1
1
0
10
0111
Signal x
44Synthesis exercise
1011
wx
yz
00
01
11
10
-
0
0
0
00
0011
-
0
0
0
01
-
1
1
1
11
-
1
0
0
10
0111
Signal z
45Logic decomposition example
y-
y-
1001
1011
z-
w-
1000
0001
w
y
x
w-
z-
z-
w-
w
1010
0000
0101
0011
w-
z-
y
x
y
x
x-
0010
0100
x-
y
x
z
0110
0111
z
46Logic decomposition example
x
y-
w
y
1001
1011
z-
z
w-
y
1000
0001
w
y
z
x
w-
z-
x
w
1010
0000
0101
0011
w-
z-
y
x
w
y
z
0010
0100
x-
z
y
x
z
y
0110
0111
x
z
y
47Logic decomposition example
s1
x
y-
w
s
1001
1011
y
z-
s-
z
w
1001
1000
z-
s-
y
w-
x
w
0011
0001
1000
1010
y
s-
x
w-
z-
w
x-
y
z
0000
0101
1010
z
w-
z-
y
x
0111
0010
0100
y
s
y
x
x
z
s0
z
0111
y
0110
48Logic decomposition example
s1
y-
y-
1001
1011
z-
s-
s-
w
1001
1000
z-
s-
y
w-
z-
w-
w
0011
0001
1000
1010
y
s-
x
w-
z-
x-
0000
0101
1010
y
x
x-
w-
z-
y
x
0111
0010
0100
s
s
y
x
z
s0
z
0111
0110
49Speed-independent Netlist
DTACK-
DSr
LDS
LDTACK
D
DTACK
DSr-
D-
LDS-
LDTACK-
D
DTACK
LDS
map
csc
DSr
LDTACK
50Adding timing assumptions
DTACK-
DSr
LDS
LDTACK
D
DTACK
DSr-
D-
LDS-
LDTACK-
D
DTACK
LDS
map
csc
DSr
LDTACK
51Adding timing assumptions
DTACK-
DSr
LDS
LDTACK
D
DTACK
DSr-
D-
LDS-
LDTACK-
D
DTACK
LDS
map
csc
DSr
LDTACK
52State space domain
DSr
LDTACK-
53State space domain
DSr
LDTACK-
54State space domain
DSr
LDTACK-
Two more unreachable states
55Boolean domain
LDS 1
LDS 0
-
-
-
0
1
-
0
1
-
-
-
-
-
-
-
-
1
1
1
-
-
-
-
-
0
0
0
0
0
0/1?
-
-
56Boolean domain
LDS 1
LDS 0
-
-
-
0
1
-
0
1
-
-
-
-
-
-
-
-
1
1
1
-
-
-
-
-
0
0
-
0
0
1
-
-
One more DC vector for all signals
One state conflict is removed
57Netlist with one constraint
DTACK-
DSr
LDS
LDTACK
D
DTACK
DSr-
D-
LDS-
LDTACK-
D
DTACK
LDS
map
csc
DSr
LDTACK
58Netlist with one constraint
DTACK-
DSr
LDS
LDTACK
D
DTACK
DSr-
D-
LDS-
LDTACK-
D
DTACK
LDS
DSr
LDTACK
59Conclusions
- STGs have a high expressiveness power at a low
level of granularity (similar to FSMs for
synchronous systems) - Synthesis from STGs can be fully automated
- Synthesis tools often suffer from the state
explosion problem (symbolic techniques are used) - The theory of logic synthesis from STGs can be
found in
J. Cortadella, M. Kishinevsky, A. Kondratyev, L.
Lavagno and A. Yakovlev,Logic Synthesis of
Asynchronous Controllers and Interfaces,Springer
Verlag, 2002.