Title: Quadrilaterals
1Quadrilaterals
- Eleanor Roosevelt High School
- Chin-Sung Lin
2Definitions of the Quadrilaterals
ERHS Math Geometry
Mr. Chin-Sung Lin
3Quadrilaterals
ERHS Math Geometry
A quadrilateral is a polygon with four sides
Mr. Chin-Sung Lin
4Parts Properties of the Quadrilaterals
ERHS Math Geometry
Mr. Chin-Sung Lin
5Consecutive (Adjacent) Vertices
ERHS Math Geometry
Consecutive vertices or adjacent vertices are
vertices that are endpoints of the same side P
and Q, Q and R, R and S, S and P
Q
P
R
S
Mr. Chin-Sung Lin
6Consecutive (Adjacent) Sides
ERHS Math Geometry
Consecutive sides or adjacent sides are sides
that have a common endpoint PQ and QR, QR and RS,
RS and SP, SP and PQ
Q
P
R
S
Mr. Chin-Sung Lin
7Opposite Sides
ERHS Math Geometry
Opposite sides of a quadrilateral are sides that
do not have a common endpoint PQ and RS, SP and QR
Q
P
R
S
Mr. Chin-Sung Lin
8Consecutive angles
ERHS Math Geometry
Consecutive angles of a quadrilateral are angles
whose vertices are consecutive ?P and ?Q, ?Q and
?R, ?R and ?S, ?S and ?P
Q
P
R
S
Mr. Chin-Sung Lin
9Opposite Angles
ERHS Math Geometry
Opposite angles of a quadrilateral are angles
whose vertices are not consecutive ?P and ?R, ?Q
and ?S
Q
P
R
S
Mr. Chin-Sung Lin
10Diagonals
ERHS Math Geometry
A diagonal of a quadrilateral is a line segment
whose endpoints are two nonadjacent vertices of
the quadrilateral PR and QS
Q
P
R
S
Mr. Chin-Sung Lin
11Sum of the Measures of Angles
ERHS Math Geometry
The sum of the measures of the angles of a
quadrilateral is 360 degrees m?P m?Q m?R
m?S 360
Q
P
R
S
Mr. Chin-Sung Lin
12Parallelograms
ERHS Math Geometry
Mr. Chin-Sung Lin
13Parallelogram
ERHS Math Geometry
A parallelogram is a quadrilateral in which two
pairs of opposite sides are parallel AB CD,
AD BC A parallelogram can be denoted by the
symbol ABCD The use of arrowheads, pointing
in the same direction, to show sides that are
parallel in the figure
Mr. Chin-Sung Lin
14Theorems of Parallelogram
ERHS Math Geometry
Mr. Chin-Sung Lin
15Theorems of Parallelogram
ERHS Math Geometry
Theorem of Dividing Diagonals Theorem of
Opposite Sides Theorem of Opposite Angles Theorem
of Bisecting Diagonals Theorem of Consecutive
Angles
Mr. Chin-Sung Lin
16Theorem of Dividing Diagonals
ERHS Math Geometry
A diagonal divides a parallelogram into two
congruent triangles If ABCD is a parallelogram,
then ? ABD ? ? CDB
Mr. Chin-Sung Lin
17Theorem of Dividing Diagonals
ERHS Math Geometry
Statements Reasons 1. ABCD is a
parallelogram 1. Given 2. AB DC and AD
BC 2. Definition of parallelogram 3. ?1 ? ?2
and ?3 ? ?4 3. Alternate interior angles 4. BD
? BD 4. Reflexive property 5. ? ABD ? ?
CDB 5. ASA postulate
Mr. Chin-Sung Lin
18Theorem of Opposite Sides
ERHS Math Geometry
Opposite sides of a parallelogram are
congruent If ABCD is a parallelogram, then AB ?
CD, and BC ? DA
Mr. Chin-Sung Lin
19Theorem of Opposite Sides
ERHS Math Geometry
Statements Reasons 1. ABCD is a
parallelogram 1. Given 2. Connect BD 2. Form
two triangles 3. AB DC and AD BC 3.
Definition of parallelogram 4. ?1 ? ?2 and ?3 ?
?4 4. Alternate interior angles 5.
BD ? BD 5. Reflexive property 6. ? ABD ? ?
CDB 6. ASA postulate 7. AB ? CD and BC ? DA
7. CPCTC
Mr. Chin-Sung Lin
20Application Example 1
ERHS Math Geometry
ABCD is a parallelogram, whats the perimeter of
ABCD ?
A
B
15
10
D
C
Mr. Chin-Sung Lin
21Application Example 1
ERHS Math Geometry
ABCD is a parallelogram, whats the perimeter of
ABCD ? perimeter 50
A
B
15
10
D
C
Mr. Chin-Sung Lin
22Application Example 2
ERHS Math Geometry
ABCD is a parallelogram, if the perimeter of ABCD
is 80, solve for x
A
B
x-20
10
D
C
Mr. Chin-Sung Lin
23Application Example 2
ERHS Math Geometry
ABCD is a parallelogram, if the perimeter of ABCD
is 80, solve for x x 50
A
B
x-20
10
D
C
Mr. Chin-Sung Lin
24Theorem of Opposite Angles
ERHS Math Geometry
Opposite angles of a parallelogram are
congruent If ABCD is a parallelogram, then ?A ?
?C, and ?B ? ?D
Mr. Chin-Sung Lin
25Theorem of Opposite Angles
ERHS Math Geometry
Statements Reasons 1. ABCD is a
parallelogram 1. Given 2. AB DC and AD
BC 2. Definition of parallelogram 3. ?A and ?B
are supplementary 3. Same side interior angles
?A and ?D are supplementary ?C and ?B are
supplementary 4. ?A ? ?C 4. Supplementary
angle theorem ?B ? ?D
26Application Example 3
ERHS Math Geometry
ABCD is a parallelogram, what are the values of
x and y?
A
B
120o
60o
x
y
D
C
Mr. Chin-Sung Lin
27Application Example 3
ERHS Math Geometry
ABCD is a parallelogram, what are the values of
x and y? x 120o y 60o
A
B
120o
60o
x
y
D
C
Mr. Chin-Sung Lin
28Application Example 4
ERHS Math Geometry
ABCD is a parallelogram, what are the values of
x and y?
A
B
X20
y - 20
2x - 60
180 - y
D
C
Mr. Chin-Sung Lin
29Application Example 4
ERHS Math Geometry
ABCD is a parallelogram, what are the values of
x and y? x 80o y 100o
A
B
X20
y - 20
2x - 60
180 - y
D
C
Mr. Chin-Sung Lin
30Theorem of Bisecting Diagonals
ERHS Math Geometry
The diagonals of a parallelogram bisect each
other If ABCD is a parallelogram, then AC and BD
bisect each other at O
Mr. Chin-Sung Lin
31Theorem of Bisecting Diagonals
ERHS Math Geometry
Statements Reasons 1. ABCD is a
parallelogram 1. Given 2. AB DC 2.
Definition of parallelogram 3. ?1 ? ?2 and ?3 ?
?4 3. Alternate interior angles 4. AB ?
DC 4. Opposite sides congruent 5. ? AOB ? ?
COD 5. ASA postulate 6. AO OC and BO OD 6.
CPCTC 7. AC and BD bisect each other 7.
Definition of segment bisector
Mr. Chin-Sung Lin
32Application Example 5
ERHS Math Geometry
ABCD is a parallelogram, if AO 3, BO 4 AB
6, AC BD ?
A
B
6
3
4
O
D
C
Mr. Chin-Sung Lin
33Application Example 5
ERHS Math Geometry
ABCD is a parallelogram, if AO 3, BO 4 AB
6, AC BD ? AC BD 24
A
B
6
3
4
O
D
C
Mr. Chin-Sung Lin
34Application Example 6
ERHS Math Geometry
ABCD is a parallelogram, if AO x4, BO 2y-6,
CO 3x-4, an DO y2, solve for x and y
A
B
x4
2y-6
O
y2
3x-4
D
C
Mr. Chin-Sung Lin
35Application Example 6
ERHS Math Geometry
ABCD is a parallelogram, if AO x4, BO 2y-6,
CO 3x-4, an DO y2, solve for x and y x 4
y 8
A
B
x4
2y-6
O
y2
3x-4
D
C
Mr. Chin-Sung Lin
36Theorem of Consecutive Angles
ERHS Math Geometry
The consecutive angles of a parallelogram are
supplementary If ABCD is a parallelogram,
then ?A and ?B are supplementary ?C and ?D are
supplementary ?A and ?D are supplementary ?B and
?C are supplementary
Mr. Chin-Sung Lin
37Theorem of Consecutive Angles
ERHS Math Geometry
A
B
Statements Reasons 1. ABCD is a
parallelogram 1. Given 2. AB DC and AD
BC 2. Definition of parallelogram 3. ?A and ?B,
?C and ?D 3. Same-side interior angles ?A
and ?D, ?B and ?C are supplementary are
supplementary
D
C
Mr. Chin-Sung Lin
38Application Example 7
ERHS Math Geometry
ABCD is a parallelogram, what are the values of
x, y and z?
A
B
120o
x
y
z
D
C
Mr. Chin-Sung Lin
39Application Example 7
ERHS Math Geometry
ABCD is a parallelogram, what are the values of
x, y and z? x 60o y 120o z 60o
A
B
120o
x
y
z
D
C
Mr. Chin-Sung Lin
40Application Example 8
ERHS Math Geometry
ABCD is a parallelogram, what are the values of
x and y?
A
B
X30
X-30
Y20
D
C
Mr. Chin-Sung Lin
41Application Example 8
ERHS Math Geometry
ABCD is a parallelogram, what are the values of
x and y? x 90o y 100o
A
B
X30
X-30
Y20
D
C
Mr. Chin-Sung Lin
42Group Work
ERHS Math Geometry
Mr. Chin-Sung Lin
43Question 1
ERHS Math Geometry
ABCD is a parallelogram, calculate the perimeter
of ABCD
A
B
x30
2y-10
y10
D
C
2x-10
Mr. Chin-Sung Lin
44Question 1
ERHS Math Geometry
ABCD is a parallelogram, calculate the perimeter
of ABCD perimeter 200
A
B
x30
2y-10
y10
D
C
2x-10
Mr. Chin-Sung Lin
45Question 2
ERHS Math Geometry
ABCD is a parallelogram, solve for x
A
B
X30
X-10
O
X10
2X
D
C
Mr. Chin-Sung Lin
46Question 2
ERHS Math Geometry
ABCD is a parallelogram, solve for x x 30
A
B
X30
X-10
O
X10
2X
D
C
Mr. Chin-Sung Lin
47Question 3
ERHS Math Geometry
Given ABCD is a parallelogram Prove XO ? YO
Mr. Chin-Sung Lin
48Question 4
ERHS Math Geometry
Given ABCD is a parallelogram, BO ? OD Prove EO
? OF
A
B
E
O
D
C
F
Mr. Chin-Sung Lin
49Question 5
ERHS Math Geometry
Given ABCD is a parallelogram, AF CE Prove
?FAB ? ?ECD
A
B
E
F
D
C
Mr. Chin-Sung Lin
50Review Theorems of Parallelogram
ERHS Math Geometry
Theorem of Dividing Diagonals Theorem of
Opposite Sides Theorem of Opposite Angles Theorem
of Bisecting Diagonals Theorem of Consecutive
Angles
Mr. Chin-Sung Lin
51Prove Quadrilaterals are Parallelograms
ERHS Math Geometry
Mr. Chin-Sung Lin
52Criteria for Proving Parallelograms
ERHS Math Geometry
Parallel opposite sides Congruent opposite
sides Congruent parallel opposite
sides Congruent opposite angles Supplementary
consecutive angles Bisecting diagonals
Mr. Chin-Sung Lin
53Parallel Opposite Sides
ERHS Math Geometry
If both pairs of opposite sides of a
quadrilateral are parallel, then the
quadrilateral is a parallelogram If AB CD,
and BC DA then, ABCD is a parallelogram
Mr. Chin-Sung Lin
54Parallel Opposite Sides
ERHS Math Geometry
Statements Reasons 1. AB CD and BC DA
1. Given 2. ABCD is a parallelogram 2.
Definition of parallelogram
Mr. Chin-Sung Lin
55Application Example 1
ERHS Math Geometry
If m?1 m?2 m?3, then ABCD is a parallelogram
A
B
1
2
3
D
C
Mr. Chin-Sung Lin
56Application Example 2
ERHS Math Geometry
ABCD is a quadrilateral as shown below, solve for
x
A
B
3x-20
50o
60o
60o
50o
D
C
2x10
Mr. Chin-Sung Lin
57Application Example 2
ERHS Math Geometry
ABCD is a quadrilateral as shown below, solve for
x x 30
A
B
3x-20
50o
60o
60o
50o
D
C
2x10
Mr. Chin-Sung Lin
58Congruent Opposite Sides
ERHS Math Geometry
If both pairs of opposite sides of a
quadrilateral are congruent, then the
quadrilateral is a parallelogram If AB ? CD,
and BC ? DA then, ABCD is a parallelogram
Mr. Chin-Sung Lin
59Congruent Opposite Sides
ERHS Math Geometry
If both pairs of opposite sides of a
quadrilateral are congruent, then the
quadrilateral is a parallelogram If AB ? CD,
and BC ? DA then, ABCD is a parallelogram
Mr. Chin-Sung Lin
60Congruent Opposite Sides
ERHS Math Geometry
Statements Reasons 1. Connect BD 1. Form
two triangles 2. AB ? CD and BC ? DA 2. Given
3. BD ? BD 3. Reflexive property 4. ? ABD ?
? CDB 4. SSS postulate 5. ?1 ? ?2 and ?3 ? ?4
5. CPCTC 6. AB DC and AD BC 6.
Converse of alternate interior angles
theorem 7. ABCD is a parallelogram 7.
Definition of parallelogram
Mr. Chin-Sung Lin
61Application Example 3
ERHS Math Geometry
ABCD is a quadrilateral, solve for x
A
B
15
X50
10
10
2x-30
D
C
15
Mr. Chin-Sung Lin
62Application Example 3
ERHS Math Geometry
ABCD is a quadrilateral, solve for x x 80
A
B
15
X50
10
10
2x-30
D
C
15
Mr. Chin-Sung Lin
63Application Example 4
ERHS Math Geometry
ABCD is a parallelogram, if DF BE, then AECF is
also a parallelogram
Mr. Chin-Sung Lin
64Congruent Parallel Opposite Sides
ERHS Math Geometry
If one pair of opposite sides of a quadrilateral
are both congruent and parallel, then the
quadrilateral is a parallelogram If AB ? CD,
and AB CD then, ABCD is a parallelogram
Mr. Chin-Sung Lin
65Congruent Parallel Opposite Sides
ERHS Math Geometry
Statements Reasons 1. Connect BD 1. Form
two triangles 2. AB ? CD and AB CD 2. Given
3. BD ? BD 3. Reflexive property 4. ?1 ? ?2
4. Alternate interior angles 5. ? ABD ? ?
CDB 5. SAS postulate 6. ?3 ? ?4 6.
CPCTC 7. AD BC 7. Converse of alternate
interior angles theorem 8. ABCD is a
parallelogram 8. Definition of parallelogram
Mr. Chin-Sung Lin
66Application Example 5
ERHS Math Geometry
ABCD is a quadrilateral, solve for x and y
A
B
X5
y50
30o
10
10
30o
2y-20
D
C
Mr. Chin-Sung Lin
67Application Example 5
ERHS Math Geometry
ABCD is a quadrilateral, solve for x and y x
5 y 70o
A
B
X5
y50o
30o
10
10
30o
2y-20o
D
C
Mr. Chin-Sung Lin
68Application Example 6
ERHS Math Geometry
ABCD is a parallelogram, if m?1 m?2, then AECF
is also a parallelogram
1
2
Mr. Chin-Sung Lin
69Congruent Opposite Angles
ERHS Math Geometry
If both pairs of opposite angles of a
quadrilateral are congruent, then the
quadrilateral is a parallelogram If ?A ? ?C,
and ?B ? ?D Then, ABCD is a parallelogram
Mr. Chin-Sung Lin
70Congruent Opposite Angles
ERHS Math Geometry
Statements Reasons 1. Connect BD 1. Form
two triangles 2. m?1 m?4 m?A ? 180
2. Triangle angle-sum theorem m?2 m?3 m?B
? 180 3. m?1 m?4 m?A 3. Addition
property m?2 m?3 m?C ? 360 4. m?1 m?3
m?B 4. Partition property m?4 m?2
m?D 5. m?A m?B m?C m?D 5. Substitution
property 360
Mr. Chin-Sung Lin
71Congruent Opposite Angles
ERHS Math Geometry
Statements Reasons 6. ?A ? ?C and ?B ? ?D
6. Given 7. 2m?A 2m?B 360 7.
Substitution property 2m?A 2m?D 360 8.
m?A m?B 180 8. Division property m?A
m?D 180 9. AD BC, AB DC 9. Converse of
same-side interior angles 10. ABCD is
a parallelogram 10. Definition of parallelogram
Mr. Chin-Sung Lin
72Application Example 7
ERHS Math Geometry
ABCD is a quadrilateral, solve for x
A
B
X30
130o
50o
50o
130o
D
C
2x-40
Mr. Chin-Sung Lin
73Application Example 7
ERHS Math Geometry
ABCD is a quadrilateral, solve for x x 70
A
B
X30
130o
50o
50o
130o
D
C
2x-40
Mr. Chin-Sung Lin
74Application Example 8
ERHS Math Geometry
if m?1 m?2, m?3 m?4, then ABCD is a
parallelogram
A
B
1
4
3
D
C
2
Mr. Chin-Sung Lin
75Bisecting Diagonals
ERHS Math Geometry
If the diagonals of a quadrilateral bisect each
other, then the quadrilateral is a
parallelogram If AC and BD bisect each other at
O, then, ABCD is a parallelogram
Mr. Chin-Sung Lin
76Bisecting Diagonals
ERHS Math Geometry
Statements Reasons 1. AC and BD bisect at
O 1. Given 2. AO ? CO and BO ? DO 2. Def. of
segment bisector 3. ?AOB ? ?COD, ?AOD ? ?COB
3. Vertical angles 4. ?AOB ? ?COD, ?AOD ? ?COB
4. SAS postulate 5. ?1 ? ?2 and ?3 ? ?4
5. CPCTC 6. AB DC and AD BC 6.
Converse of alternate interior angles
theorem 7. ABCD is a parallelogram 7.
Definition of parallelogram
Mr. Chin-Sung Lin
77Application Example 9
ERHS Math Geometry
? AOB ? ? COD, then ABCD is a parallelogram
Mr. Chin-Sung Lin
78Supplementary Consecutive Angles
ERHS Math Geometry
If an angle of a quadrilateral is supplementary
to both of its consecutive angles, then the
quadrilateral is a parallelogram If ?A and ?B
are supplementary ?A and ?D are
supplementary then, ABCD is a parallelogram
Mr. Chin-Sung Lin
79Supplementary Consecutive Angles
ERHS Math Geometry
Statements Reasons 1. ?A and ?B, ?A and ?D
1. Given are supplementary 2. AB
DC and AD BC 2. Converse of
same-side interior angles theorem 3.
ABCD is a parallelogram 3. Definition
of parallelogram
Mr. Chin-Sung Lin
80Application Example 10
ERHS Math Geometry
ABCD is a quadrilateral, solve for x
Mr. Chin-Sung Lin
81Application Example 10
ERHS Math Geometry
ABCD is a quadrilateral, solve for x x 20
Mr. Chin-Sung Lin
82Review Proving Parallelograms
ERHS Math Geometry
Parallel opposite sides Congruent opposite
sides Congruent parallel opposite
sides Congruent opposite angles Supplementary
consecutive angles Bisecting diagonals
Mr. Chin-Sung Lin
83Rectangles
ERHS Math Geometry
Mr. Chin-Sung Lin
84Rectangles
ERHS Math Geometry
A rectangle is a parallelogram containing one
right angle
Mr. Chin-Sung Lin
85All Angles Are Right Angles
ERHS Math Geometry
All angles of a rectangle are right angles Given
ABCD is a rectangle with ?A 90o Prove ?B
90o, ?C 90o, ?D 90o
Mr. Chin-Sung Lin
86All Angles Are Right Angles
ERHS Math Geometry
Statements Reasons 1. ABCD is a rectangle
?A 90o 1. Given 2. ?C 90o 2. Opposite
angles 3. m?A m?D 180 3. Consecutive angles
m?A m?B 180 4. 90 m?D 180 4.
Substitution 90 m?B 180 5. m?B 90, m?D
90 5. Subtraction 6. ?B 90o, ?D
90o 6. Def. of measurement of angles
Mr. Chin-Sung Lin
87All Angles Are Right Angles
ERHS Math Geometry
The diagonals of a rectangle are congruent Given
ABCD is a rectangle Prove AC ? BD
Mr. Chin-Sung Lin
88All Angles Are Right Angles
ERHS Math Geometry
Statements Reasons 1. ABCD is a rectangle
1. Given 2. ?C 90o, ?D 90o 2. All angles
are right angles 3. ?C ? ?D 3. Substitution 4.
DC ? DC 4. Reflexive 5. AD ? BC 5.
Opposite sides 6. ?ADC ? ?BCD 6. SAS
postulate 7. AC ? BD 7. CPCTC
Mr. Chin-Sung Lin
89Properties of Rectangle
ERHS Math Geometry
- The properties of a rectangle
- All the properties of a parallelogram
- Four right angles (equiangular)
- Congruent diagonals
Mr. Chin-Sung Lin
90Proving Rectangles
ERHS Math Geometry
Mr. Chin-Sung Lin
91Proving Rectangles
ERHS Math Geometry
- To show that a quadrilateral is a rectangle, by
showing that the quadrilateral is equiangular or
a parallelogram - that contains a right angle, or
- with congruent diagonals
- If a parallelogram does not contain a right
angle, or doesnt have congruent diagonals, then
it is not a rectangle
Mr. Chin-Sung Lin
92Proving Rectangles
ERHS Math Geometry
If one angle of a parallelogram is a right angle,
then the parallelogram is a rectangle Given
ABCD is a parallelogram and m?A 90 Prove ABCD
is a rectangle
Mr. Chin-Sung Lin
93Proving Rectangles
ERHS Math Geometry
If a quadrilateral is equiangular, it is a
rectangle Given ABCD is a quadrangular
m?A m?B m?C m?D Prove ABCD is a rectangle
Mr. Chin-Sung Lin
94Proving Rectangles
ERHS Math Geometry
The diagonals of a parallelogram are
congruent Given AC ? BD Prove ABCD is a
rectangle
Mr. Chin-Sung Lin
95Application Example
ERHS Math Geometry
- ABCD is a parallelogram, m?A 6x - 30 and m?C
4x 10. Show that ABCD is a rectangle
Mr. Chin-Sung Lin
96Application Example
ERHS Math Geometry
- ABCD is a parallelogram, m?A 6x - 30 and m?C
4x 10. Show that ABCD is a rectangle - x 20
- m?A 90
- ABCD is a rectangle
Mr. Chin-Sung Lin
97Rhombuses
ERHS Math Geometry
Mr. Chin-Sung Lin
98Rhombus
ERHS Math Geometry
A rhombus is a parallelogram that has two
congruent consecutive sides
Mr. Chin-Sung Lin
99All Sides Are Congruent
ERHS Math Geometry
All sides of a rhombus are congruent Given ABCD
is a rhombus with AB ? DA Prove AB ? BC ? CD ? DA
Mr. Chin-Sung Lin
100All Sides Are Congruent
ERHS Math Geometry
Statements Reasons 1. ABCD is a rhombus w.
AB ? DA 1. Given 2. AB ? DC, AD ? BC 2.
Opposite sides are congruent 3. AB ? BC ? CD ?
DA 3. Transitive
Mr. Chin-Sung Lin
101Perpendicular Diagonals
ERHS Math Geometry
The diagonals of a rhombus are perpendicular to
each other Given ABCD is a rhombus Prove AC ? BD
O
Mr. Chin-Sung Lin
102Perpendicular Diagonals
ERHS Math Geometry
Statements Reasons 1. ABCD is a rhombus 1.
Given 2. AO ? AO 2. Reflexive 3. AD ? AB 3.
Congruent sides 4. BO ? DO 4. Bisecting
diagonals 5. ?AOD ? ?AOB 5. SSS postulate 6.
?AOD ? ?AOB 6. CPCTC 7. m?AOD m?AOB 180 7.
Supplementary angles 8. 2m?AOD 180 8.
Substitution 9. ?AOD 90o 9.
Division pustulate 10. AC ? BD 10. Definition
of perpendicular
103Diagonals Bisecting Angles
ERHS Math Geometry
The diagonals of a rhombus bisect its
angles Given ABCD is a rhombus Prove AC bisects
?DAB and ?DCB DB bisects ?CDA and ?CBA
Mr. Chin-Sung Lin
104Diagonals Bisecting Angles
ERHS Math Geometry
Statements Reasons 1. ABCD is a rhombus 1.
Given 2. AD ? AB, DC ? BC 2. Congruent sides
AD ? DC, AB ? BC 3. AC ? AC, DB ? DB 3.
Reflexive postulate 4. ?ACD ? ?ACB, ?BAD ?
?BCD 4. SSS postulate 5. ?DAC ? ?BAC, ?DCA ?
?BCA 5. CPCTC ?ADB ? ?CDB, ?ABD ? ?CBD 6.
AC bisects ?DAB and ?DCB 6. Definition of angle
bisector DB bisects ?CDA and ?CBA
Mr. Chin-Sung Lin
105Properties of Rhombus
ERHS Math Geometry
- The properties of a rhombus
- All the properties of a parallelogram
- Four congruent sides (equilateral)
- Perpendicular diagonals
- Diagonals that bisect opposite pairs of angles
Mr. Chin-Sung Lin
106Proving Rhombus
ERHS Math Geometry
Mr. Chin-Sung Lin
107Proving Rhombus
ERHS Math Geometry
- To show that a quadrilateral is a rhombus, by
showing that the quadrilateral is equilateral or
a parallelogram - that contains two congruent consecutive sides
- with perpendicular diagonals, or
- with diagonals bisecting opposite angles
- If a parallelogram does not contain two congruent
consecutive sides, or doesnt have perpendicular
diagonals, then it is not a rectangle
Mr. Chin-Sung Lin
108Proving Rhombus
ERHS Math Geometry
If a parallelogram has two congruent consecutive
sides, then the parallelogram is a
rhombus Given ABCD is a parallelogram and AB ?
DA Prove ABCD is a rhombus
Mr. Chin-Sung Lin
109Proving Rhombus
ERHS Math Geometry
If a quadrilateral is equilateral, it is a
rhombus Given ABCD is a parallelogram and
AB ? BC ? CD ? DA Prove ABCD is a rhombus
Mr. Chin-Sung Lin
110Proving Rhombus
ERHS Math Geometry
The diagonals of a parallelogram are
perpendicular Given AC ? BD Prove ABCD is a
rhombus
Mr. Chin-Sung Lin
111Proving Rhombus
ERHS Math Geometry
Each diagonal of a rhombus bisects two angles of
the rhombus Given AC bisects ?DAB and
?DCB Prove ABCD is a rhombus
Mr. Chin-Sung Lin
112Application Example
ERHS Math Geometry
ABCD is a parallelogram. AB 2x 1, DC 3x -
11, AD x 13 Prove ABCD is a rhombus
A
B
2x1
x13
D
C
3x-11
Mr. Chin-Sung Lin
113Application Example
ERHS Math Geometry
ABCD is a parallelogram. AB 2x 1, DC 3x -
11, AD x 13 Prove ABCD is a rhombus x
12 AB AD 25 ABCD is a rhombus
A
B
2x1
x13
D
C
3x-11
Mr. Chin-Sung Lin
114Application Example
ERHS Math Geometry
- ABCD is a parallelogram, AB 3x - 2, BC 2x
2, and CD x 6. Show that ABCD is a rhombus
Mr. Chin-Sung Lin
115Application Example
ERHS Math Geometry
- ABCD is a parallelogram, AB 3x - 2, BC 2x
2, and CD x 6. Show that ABCD is a rhombus - x 4
- AB BC 10
- ABCD is a rhombus
Mr. Chin-Sung Lin
116Squares
ERHS Math Geometry
Mr. Chin-Sung Lin
117Squares
ERHS Math Geometry
A square is a rectangle that has two congruent
consecutive sides
Mr. Chin-Sung Lin
118Squares
ERHS Math Geometry
A square is a rectangle with four congruent sides
(an equilateral rectangle)
Mr. Chin-Sung Lin
119Squares
ERHS Math Geometry
A square is a rhombus with four right angles (an
equiangular rhombus)
Mr. Chin-Sung Lin
120Squares
ERHS Math Geometry
A square is an equilateral quadrilateral A square
is an equiangular quadrilateral
Mr. Chin-Sung Lin
121Squares
ERHS Math Geometry
A square is a rhombus A square is a rectangle
Mr. Chin-Sung Lin
122Properties of Square
ERHS Math Geometry
- The properties of a square
- All the properties of a parallelogram
- All the properties of a rectangle
- All the properties of a rhombus
Mr. Chin-Sung Lin
123Proving Squares
ERHS Math Geometry
Mr. Chin-Sung Lin
124Proving Squares
ERHS Math Geometry
If a rectangle has two congruent consecutive
sides, then the rectangle is a
square Given ABCD is a rectangle and AB ?
DA Prove ABCD is a square
Mr. Chin-Sung Lin
125Proving Squares
ERHS Math Geometry
If one of the angles of a rhombus is a right
angle, then the rhombus is a square Given ABCD
is a rhombus and ?A 90o Prove ABCD
is a square
Mr. Chin-Sung Lin
126Proving Squares
ERHS Math Geometry
- To show that a quadrilateral is a square, by
showing that the quadrilateral is a - rectangle with a pair of congruent consecutive
sides, or - a rhombus that contains a right angle
Mr. Chin-Sung Lin
127Application Example
ERHS Math Geometry
- ABCD is a square, m?A 4x - 30, AB 3x 10
and BC 4y. Solve x and y
Mr. Chin-Sung Lin
128Application Example
ERHS Math Geometry
- ABCD is a square, m?A 4x - 30, AB 3x 10
and BC 4y. Solve x and y - 4x 30 90
- x 30
- y 25
Mr. Chin-Sung Lin
129Review Questions
ERHS Math Geometry
Mr. Chin-Sung Lin
130Question 1
ERHS Math Geometry
- A parallelogram where all angles are right angles
(90o) is a _________?
Mr. Chin-Sung Lin
131Question 1 Answer
ERHS Math Geometry
- A parallelogram where all angles are right angles
(90o) is a _________?
Rectangle
Mr. Chin-Sung Lin
132Question 2
ERHS Math Geometry
- A parallelogram where all sides are congruent is
a _________?
Mr. Chin-Sung Lin
133Question 2 Answer
ERHS Math Geometry
- A parallelogram where all sides are congruent is
a _________?
Rhombus
Mr. Chin-Sung Lin
134Question 3
ERHS Math Geometry
- A rectangle with four congruent sides is a
_________?
Mr. Chin-Sung Lin
135Question 3 Answer
ERHS Math Geometry
- A rectangle with four congruent sides is a
_________?
Square
Mr. Chin-Sung Lin
136Question 4
ERHS Math Geometry
- A rhombus with four right angles is a _________?
Mr. Chin-Sung Lin
137Question 4 Answer
ERHS Math Geometry
- A rhombus with four right angles is a _________?
Square
Mr. Chin-Sung Lin
138Question 5
ERHS Math Geometry
- A parallelogram with congruent diagonals is a
_________?
Mr. Chin-Sung Lin
139Question 5 Answer
ERHS Math Geometry
- A parallelogram with congruent diagonals is a
_________?
Rectangle
Mr. Chin-Sung Lin
140Question 6
ERHS Math Geometry
- A parallelogram where all angles are right angles
and all sides are congruent is a _________?
Mr. Chin-Sung Lin
141Question 6 Answer
ERHS Math Geometry
- A parallelogram where all angles are right angles
and all sides are congruent is a _________?
Square
Mr. Chin-Sung Lin
142Question 7
ERHS Math Geometry
- A parallelogram with perpendicular diagonals is a
_________?
Mr. Chin-Sung Lin
143Question 7 Answer
ERHS Math Geometry
- A parallelogram with perpendicular diagonals is a
_________?
Rhombus
Mr. Chin-Sung Lin
144Question 8
ERHS Math Geometry
- A parallelogram whose diagonals bisect opposite
pairs of angles is a ______?
Mr. Chin-Sung Lin
145Question 8 Answer
ERHS Math Geometry
- A parallelogram whose diagonals bisect opposite
pairs of angles is a ______?
Rhombus
Mr. Chin-Sung Lin
146Question 9
ERHS Math Geometry
- A quadrilateral which is both rectangle and
rhombus is a _________?
Mr. Chin-Sung Lin
147Question 9 Answer
ERHS Math Geometry
- A quadrilateral which is both rectangle and
rhombus is a _________?
Square
Mr. Chin-Sung Lin
148Question 10
ERHS Math Geometry
- Choose the right answer(s)
- A parallelogram is a rhombus
- A rectangle is a square
- A rhombus is a parallelogram
Mr. Chin-Sung Lin
149Question 10 Answer
ERHS Math Geometry
- Choose the right answer(s)
- A parallelogram is a rhombus
- A rectangle is a square
- A rhombus is a parallelogram
Mr. Chin-Sung Lin
150Question 11
ERHS Math Geometry
- Choose the right answer(s)
- A quadrilateral is a parallelogram
- A square is a rhombus
- A rectangle is a rhombus
Mr. Chin-Sung Lin
151Question 11 Answer
ERHS Math Geometry
- Choose the right answer(s)
- A quadrilateral is a parallelogram
- A square is a rhombus
- A rectangle is a rhombus
Mr. Chin-Sung Lin
152Question 12
ERHS Math Geometry
- Choose the right answer(s)
- A rectangle is a parallelogram
- A square is a rectangle
- A rhombus is a square
Mr. Chin-Sung Lin
153Question 12 Answer
ERHS Math Geometry
- Choose the right answer(s)
- A rectangle is a parallelogram
- A square is a rectangle
- A rhombus is a square
Mr. Chin-Sung Lin
154Trapezoids
ERHS Math Geometry
Mr. Chin-Sung Lin
155Definitions of Trapezoids
ERHS Math Geometry
Mr. Chin-Sung Lin
156Trapezoids
ERHS Math Geometry
A trapezoid is a quadrilateral that has exactly
one pair of parallel sides The parallel sides of
a trapezoid are called bases. The nonparallel
sides of a trapezoid are the legs
Mr. Chin-Sung Lin
157Isosceles Trapezoids
ERHS Math Geometry
A trapezoid whose nonparallel sides are congruent
is called an isosceles trapezoid
Mr. Chin-Sung Lin
158Median of a Trapezoid
ERHS Math Geometry
The median of a trapezoid is the line segment
connecting the midpoints of the nonparallel sides
Mr. Chin-Sung Lin
159Examples of Trapezoids
ERHS Math Geometry
Mr. Chin-Sung Lin
160Exercise - Trapezoids
ERHS Math Geometry
Which one is a trapezoid? Why?
Mr. Chin-Sung Lin
161Exercise - Trapezoids
ERHS Math Geometry
Which one is a trapezoid? Why?
Mr. Chin-Sung Lin
162Exercise - Trapezoids
ERHS Math Geometry
Which one is a trapezoid?
Mr. Chin-Sung Lin
163Exercise - Trapezoids
ERHS Math Geometry
Which one is a trapezoid?
Mr. Chin-Sung Lin
164Properties of Isosceles Trapezoids
ERHS Math Geometry
Mr. Chin-Sung Lin
165Properties of Isosceles Trapezoids
ERHS Math Geometry
- The properties of a isosceles trapezoid
- Base angles are congruent
- Diagonals are congruent
- The property of a trapezoid
- Median is parallel to and average of the bases
Mr. Chin-Sung Lin
166Congruent Base Angles
ERHS Math Geometry
In an isosceles trapezoid the two angles whose
vertices are the endpoints of either base are
congruent The upper and lower base angles are
congruent Given Isosceles trapezoid ABCD AB
CD and AD ? BC Prove ?A ? ?B ?C ? ?D
Mr. Chin-Sung Lin
167Congruent Base Angles
ERHS Math Geometry
Given Isosceles trapezoid ABCD AB CD and
AD ? BC Prove ?A ? ?B ?C ? ?D
Mr. Chin-Sung Lin
168Congruent Diagonals
ERHS Math Geometry
The diagonals of an isosceles trapezoid are
congruent Given Isosceles trapezoid ABCD AB
CD and AD ? BC Prove AC ? BD
Mr. Chin-Sung Lin
169Congruent Diagonals
ERHS Math Geometry
Given Isosceles trapezoid ABCD AB CD and
AD ? BC Prove AC ? BD
Mr. Chin-Sung Lin
170Parallel and Average Median
ERHS Math Geometry
The median of a trapezoid is parallel to the
bases, and its length is half the sum of the
lengths of the bases Given Isosceles trapezoid
ABCD AB CD and median EF Prove AB EF
, CD EF and EF (1/2)(AB CD)
Mr. Chin-Sung Lin
171Parallel and Average Median
ERHS Math Geometry
Given Isosceles trapezoid ABCD AB CD and
median EF Prove AB EF , CD EF and
EF (1/2)(AB CD)
Mr. Chin-Sung Lin
172Proving Trapezoids
ERHS Math Geometry
Mr. Chin-Sung Lin
173Proving Trapezoids
ERHS Math Geometry
To prove that a quadrilateral is a trapezoid,
show that two sides are parallel and the other
two sides are not parallel To prove that a
quadrilateral is not a trapezoid, show that both
pairs of opposite sides are parallel or that both
pairs of opposite sides are not parallel
Mr. Chin-Sung Lin
174Proving Isosceles Trapezoids
ERHS Math Geometry
- To prove that a trapezoid is an isosceles
trapezoid, show that one of the following
statements is true - The legs are congruent
- The lower/upper base angles are congruent
- The diagonals are congruent
Mr. Chin-Sung Lin
175Application Examples
ERHS Math Geometry
Mr. Chin-Sung Lin
176Numeric Example of Trapezoids
ERHS Math Geometry
Isosceles Trapezoid ABCD, AB CD and AD ? BC
Solve for x and y
Mr. Chin-Sung Lin
177Numeric Example of Trapezoids
ERHS Math Geometry
Isosceles Trapezoid ABCD, AB CD and AD ? BC
Solve for x and y x 60 y 20
Mr. Chin-Sung Lin
178Numeric Example of Trapezoids
ERHS Math Geometry
Trapezoid ABCD, AB CD and median EF Solve for x
Mr. Chin-Sung Lin
179Numeric Example of Trapezoids
ERHS Math Geometry
Trapezoid ABCD, AB CD and median EF Solve for
x x 6
Mr. Chin-Sung Lin
180Proving Isosceles Trapezoids
ERHS Math Geometry
Given Trapezoid ABCD and ?A ? ?B Prove ABCD is
an isosceles trapezoid
Mr. Chin-Sung Lin
181Proving Isosceles Trapezoids
ERHS Math Geometry
Given Trapezoid ABCD and AC ? BD Prove ABCD is
an isosceles trapezoid
Mr. Chin-Sung Lin
182Proving Isosceles Trapezoids
ERHS Math Geometry
Given Trapezoid ABCD, AB CD and AE ? BE
Prove ABCD is an isosceles trapezoid
Mr. Chin-Sung Lin
183Summary of Quadrilaterals
ERHS Math Geometry
Mr. Chin-Sung Lin
184Properties of Quadrilaterals - 1
ERHS Math Geometry
Properties
Cong. Oppo. Sides (1 P)
Cong. Oppo. Sides (2 P)
Cong. Four Sides
Parallel Oppo. Sides (1P)
Parallel Oppo. Sides (2P)
Mr. Chin-Sung Lin
185Properties of Quadrilaterals - 1
ERHS Math Geometry
Properties
Cong. Oppo. Sides (1 P) ? ? ? ? ?
Cong. Oppo. Sides (2 P)
Cong. Four Sides
Parallel Oppo. Sides (1P)
Parallel Oppo. Sides (2P)
Mr. Chin-Sung Lin
186Properties of Quadrilaterals - 1
ERHS Math Geometry
Properties
Cong. Oppo. Sides (1 P) ? ? ? ? ?
Cong. Oppo. Sides (2 P) ? ? ? ?
Cong. Four Sides
Parallel Oppo. Sides (1P)
Parallel Oppo. Sides (2P)
Mr. Chin-Sung Lin
187Properties of Quadrilaterals - 1
ERHS Math Geometry
Properties
Cong. Oppo. Sides (1 P) ? ? ? ? ?
Cong. Oppo. Sides (2 P) ? ? ? ?
Cong. Four Sides ? ?
Parallel Oppo. Sides (1P)
Parallel Oppo. Sides (2P)
Mr. Chin-Sung Lin
188Properties of Quadrilaterals - 1
ERHS Math Geometry
Properties
Cong. Oppo. Sides (1 P) ? ? ? ? ?
Cong. Oppo. Sides (2 P) ? ? ? ?
Cong. Four Sides ? ?
Parallel Oppo. Sides (1P) ? ? ? ? ? ?
Parallel Oppo. Sides (2P)
Mr. Chin-Sung Lin
189Properties of Quadrilaterals - 1
ERHS Math Geometry
Properties
Cong. Oppo. Sides (1 P) ? ? ? ? ?
Cong. Oppo. Sides (2 P) ? ? ? ?
Cong. Four Sides ? ?
Parallel Oppo. Sides (1P) ? ? ? ? ? ?
Parallel Oppo. Sides (2P) ? ? ? ?
Mr. Chin-Sung Lin
190Properties of Quadrilaterals - 2
ERHS Math Geometry
Properties
Cong. Diagonals
Bisecting Diagonals
Perpendicular Diagonals
Cong. Opposite Angles
Supp. Opposite Angles
Mr. Chin-Sung Lin
191Properties of Quadrilaterals - 2
ERHS Math Geometry
Properties
Cong. Diagonals ? ? ?
Bisecting Diagonals
Perpendicular Diagonals
Cong. Opposite Angles
Supp. Opposite Angles
Mr. Chin-Sung Lin
192Properties of Quadrilaterals - 2
ERHS Math Geometry
Properties
Cong. Diagonals ? ? ?
Bisecting Diagonals ? ? ? ?
Perpendicular Diagonals
Cong. Opposite Angles
Supp. Opposite Angles
Mr. Chin-Sung Lin
193Properties of Quadrilaterals - 2
ERHS Math Geometry
Properties
Cong. Diagonals ? ? ?
Bisecting Diagonals ? ? ? ?
Perpendicular Diagonals ? ?
Cong. Opposite Angles
Supp. Opposite Angles
Mr. Chin-Sung Lin
194Properties of Quadrilaterals - 2
ERHS Math Geometry
Properties
Cong. Diagonals ? ? ?
Bisecting Diagonals ? ? ? ?
Perpendicular Diagonals ? ?
Cong. Opposite Angles ? ? ? ?
Supp. Opposite Angles
Mr. Chin-Sung Lin
195Properties of Quadrilaterals - 2
ERHS Math Geometry
Properties
Cong. Diagonals ? ? ?
Bisecting Diagonals ? ? ? ?
Perpendicular Diagonals ? ?
Cong. Opposite Angles ? ? ? ?
Supp. Opposite Angles ? ? ?
Mr. Chin-Sung Lin
196Properties of Quadrilaterals - 3
ERHS Math Geometry
Properties
Cong. Adj. Angles (1 P)
Cong. Adj. Angles (2 P)
Cong. Four Right Angles
Diagonals Bisect Angles
Non-Parallel Oppo. Sides
Mr. Chin-Sung Lin
197Properties of Quadrilaterals - 3
ERHS Math Geometry
Properties
Cong. Adj. Angles (1 P) ? ? ?
Cong. Adj. Angles (2 P)
Cong. Four Right Angles
Diagonals Bisect Angles
Non-Parallel Oppo. Sides
Mr. Chin-Sung Lin
198Properties of Quadrilaterals - 3
ERHS Math Geometry
Properties
Cong. Adj. Angles (1 P) ? ? ?
Cong. Adj. Angles (2 P) ? ? ?
Cong. Four Right Angles
Diagonals Bisect Angles
Non-Parallel Oppo. Sides
Mr. Chin-Sung Lin
199Properties of Quadrilaterals - 3
ERHS Math Geometry
Properties
Cong. Adj. Angles (1 P) ? ? ?
Cong. Adj. Angles (2 P) ? ? ?
Cong. Four Right Angles ? ?
Diagonals Bisect Angles
Non-Parallel Oppo. Sides
Mr. Chin-Sung Lin
200Properties of Quadrilaterals - 3
ERHS Math Geometry
Properties
Cong. Adj. Angles (1 P) ? ? ?
Cong. Adj. Angles (2 P) ? ? ?
Cong. Four Right Angles ? ?
Diagonals Bisect Angles ? ?
Non-Parallel Oppo. Sides
Mr. Chin-Sung Lin
201Properties of Quadrilaterals - 3
ERHS Math Geometry
Properties
Cong. Adj. Angles (1 P) ? ? ?
Cong. Adj. Angles (2 P) ? ? ?
Cong. Four Right Angles ? ?
Diagonals Bisect Angles ? ?
Non-Parallel Oppo. Sides ? ?
Mr. Chin-Sung Lin
202Quadrilaterals and Proofs
ERHS Math Geometry
Mr. Chin-Sung Lin
203Quadrilaterals and Proofs
ERHS Math Geometry
Given Isosceles trapezoid ABCD AB CD and
AD ? BC Prove ?1 ? ?2
Mr. Chin-Sung Lin
204Quadrilaterals and Proofs
ERHS Math Geometry
Given Parallelogram ABCD and ABDE Prove ?
EAD ? ? DBC
Mr. Chin-Sung Lin
205Quadrilaterals and Proofs
ERHS Math Geometry
Given ABC is a right ?, O is the midpoint of
AC Prove ?1 ? ?2
Mr. Chin-Sung Lin
206Quadrilaterals and Proofs
ERHS Math Geometry
Given ABCD is a rhombus, DBFE is an isosceles
trapezoid Prove CE ? CF
Mr. Chin-Sung Lin
207Coordinate Geometry and Quadrilaterals
ERHS Math Geometry
Mr. Chin-Sung Lin
208Proving Rectangles
ERHS Math Geometry
- To show that a quadrilateral is a rectangle, by
showing that the quadrilateral is a parallelogram - that contains a right angle, or
- with congruent diagonals
Mr. Chin-Sung Lin
209Proving Rectangles
ERHS Math Geometry
Given The coordinates of the vertices of a
quadrilateral Prove A given quadrilateral is a
rectangle Can be done by . (in terms of
coordinate geometry)
Mr. Chin-Sung Lin
210Proving Rectangles
ERHS Math Geometry
- Given The coordinates of the vertices of a
quadrilateral - Prove A given quadrilateral is a rectangle
- Can be done by proving a parallelogram and
- the product of the slopes of adjacent sides is
equal to -1 - the diagonals have the same lengths
Mr. Chin-Sung Lin
211Proving Rectangle - Parallelogram with a Right
Angle
ERHS Math Geometry
ABCD is a quadrilateral, where A (1, 1), B(7,
5), C(9, 2) and D(3, -2) prove ABCD is a
rectangle by proving that ABCD is a parallelogram
with a right angle
Mr. Chin-Sung Lin
212Proving Rectangle - Parallelogram with Congruent
Diagonals
ERHS Math Geometry
ABCD is a quadrilateral, where A (1, 1), B(7,
5), C(9, 2) and D(3, -2) prove ABCD is a
rectangle by proving that ABCD is a parallelogram
with congruent diagonals
Mr. Chin-Sung Lin
213Proving Rhombuses
ERHS Math Geometry
- To show that a quadrilateral is a rhombus, by
showing that the quadrilateral - has four congruent sides, or
- is a parallelogram
- a pair of adjacent sides are congruent
- the diagonals intersect at right angles, or
- the opposite angles are bisected by the diagonals
Mr. Chin-Sung Lin
214Proving Rhombuses
ERHS Math Geometry
Given The coordinates of the vertices of a
quadrilateral Prove A given quadrilateral is a
rhombus Can be done by . (in terms of
coordinate geometry)
Mr. Chin-Sung Lin
215Proving Rhombuses
ERHS Math Geometry
- Given The coordinates of the vertices of a
quadrilateral - Prove A given quadrilateral is a rhombus
- Can be done by proving
- All four sides have the same lengths
- A parallelogram and the adjacent sides have the
same lengths - A parallelogram with the product of the slopes of
the diagonals is equal to -1
Mr. Chin-Sung Lin
216Proving Rhombus - Quadrilateral with Four
Congruent Sides
ERHS Math Geometry
ABCD is a quadrilateral, where A (3, 7), B(5,
3), C(3, -1) and D(1, 3) prove ABCD is a rhombus
by proving that ABCD is a quadrilateral with four
congruent sides
Mr. Chin-Sung Lin
217Proving Rhombus - Parallelogram with Congruent
Adjacent Sides
ERHS Math Geometry
ABCD is a quadrilateral, where A (3, 7), B(5,
3), C(3, -1) and D(1, 3) prove ABCD is a rhombus
by proving that ABCD is a parallelogram with a
pair of congruent adjacent sides
Mr. Chin-Sung Lin
218Proving Rhombus - Parallelogram with
Perpendicular Diagonals
ERHS Math Geometry
ABCD is a quadrilateral, where A (3, 7), B(5,
3), C(3, -1) and D(1, 3) prove ABCD is a rhombus
by proving that ABCD is a parallelogram with
perpendicular diagonals
Mr. Chin-Sung Lin
219Proving Squares
ERHS Math Geometry
- To show that a quadrilateral is a square, by
showing that the quadrilateral is a - a rhombus that contains a right angle, or
- a rectangle with a pair of congruent adjacent
sides
Mr. Chin-Sung Lin
220Proving Squares
ERHS Math Geometry
Given The coordinates of the vertices of a
quadrilateral Prove A given quadrilateral is a
square Can be done by . (in terms of
coordinate geometry)
Mr. Chin-Sung Lin
221Proving Squares
ERHS Math Geometry
- Given The coordinates of the vertices of a
quadrilateral - Prove A given quadrilateral is a square
- Can be done by proving
- A rhombus and the product of the slopes of
adjacent sides is equal to -1 - A rectangle and two adjacent sides have the same
lengths
Mr. Chin-Sung Lin
222Proving Squares - Rhombus with a Right Angle
ERHS Math Geometry
ABCD is a quadrilateral, where A (0, 4), B(3,
5), C(4, 2) and D(1, 1) prove ABCD is a square
by proving that ABCD is a rhombus with a right
angle
Mr. Chin-Sung Lin
223Proving Squares - Rectangle with Congruent
Adjacent Sides
ERHS Math Geometry
ABCD is a quadrilateral, where A (0, 4), B(3,
5), C(4, 2) and D(1, 1) prove ABCD is a square
by proving that ABCD is a rectangle with
congruent adjacent sides
Mr. Chin-Sung Lin
224Proving Trapezoids
ERHS Math Geometry
To prove that a quadrilateral is a trapezoid,
show that two sides are parallel and the other
two sides are not parallel
Mr. Chin-Sung Lin
225Proving Trapezoids
ERHS Math Geometry
Given The coordinates of the vertices of a
quadrilateral Prove A given quadrilateral is a
trapezoid Can be done by . (in terms of
coordinate geometry)
Mr. Chin-Sung Lin
226Proving Trapezoids
ERHS Math Geometry
- Given The coordinates of the vertices of a
quadrilateral - Prove A given quadrilateral is a trapezoid
- Can be done by proving
- the slopes of one pair of opposite sides are
equal while the slopes of the other pair of
opposite sides are not equal
Mr. Chin-Sung Lin
227Proving Trapezoids - Parallel Bases and
Non-Parallel Legs
ERHS Math Geometry
ABCD is a quadrilateral, where A (-3, 5), B(4,
5), C(6, 1) and D(-5, 1) prove ABCD is a
trapezoid by proving that there are two parallel
bases and two non-parallel legs
Mr. Chin-Sung Lin
228Proving Isosceles Trapezoids
ERHS Math Geometry
- To prove that a trapezoid is an isosceles
trapezoid, show that one of the following
statements is true - The legs are congruent
- The lower/upper base angles are congruent
- The diagonals are congruent
Mr. Chin-Sung Lin
229Proving Isosceles Trapezoids
ERHS Math Geometry
Given The coordinates of the vertices of a
quadrilateral Prove A given quadrilateral is
an isosceles trapezoid Can be done by
. (in terms of coordinate geometry)
Mr. Chin-Sung Lin
230Proving Isosceles Trapezoids
ERHS Math Geometry
- Given The coordinates of the vertices of a
quadrilateral - Prove A given quadrilateral is an isosceles
trapezoid - Can be done by proving
- A trapezoid whose two legs have the same lengths
- A trapezoid whose two diagonals have the same
lengths
Mr. Chin-Sung Lin
231Proving Isosceles Trapezoids - Trapezoid with
Congruent Legs
ERHS Math Geometry
ABCD is a quadrilateral, where A (-3, 5), B(4,
5), C(6, 1) and D(-5, 1) prove ABCD is an
isosceles trapezoid by proving that ABCD is a
trapezoid with congruent legs
Mr. Chin-Sung Lin
232Proving Isosceles Trapezoids - Trapezoid w.
Congruent Diagonals
ERHS Math Geometry
ABCD is a quadrilateral, where A (-3, 5), B(4,
5), C(6, 1) and D(-5, 1) prove ABCD is an
isosceles trapezoid by proving that ABCD is a
trapezoid with congruent diagonals
Mr. Chin-Sung Lin
233Application Example
ERHS Math Geometry
Mr. Chin-Sung Lin
234Finding the Type of Quadrilateral
ERHS Math Geometry
Given ABCD is a quadrilateral, where A (3, 6),
B(7, 0), C(1, -4), D(-3, 2) Find the type of
quadrilateral ABCD
Mr. Chin-Sung Lin
235Areas of Polygons
ERHS Math Geometry
Mr. Chin-Sung Lin
236Areas of Polygons
ERHS Math Geometry
The area of a polygon is the unique real number
assigned to any polygon that indicates the number
of non-overlapping square units contained in the
polygons interior
Mr. Chin-Sung Lin
237Areas of Quadrilaterals
ERHS Math Geometry
The area of a quadrilateral is the product of the
length of the base and the length of the altitude
(height)
Mr. Chin-Sung Lin
238Areas of Parallelograms
ERHS Math Geometry
The area of a parallelogram is the product of the
length of the base and the length of the altitude
(height)
altitude
base
Mr. Chin-Sung Lin
239Q A
ERHS Math Geometry
Mr. Chin-Sung Lin
240The End
ERHS Math Geometry
Mr. Chin-Sung Lin