3%20%20Process%20and%20Device%20Physics - PowerPoint PPT Presentation

About This Presentation
Title:

3%20%20Process%20and%20Device%20Physics

Description:

Title: Author: Vlsisystems Last modified by: Created Date: 3/16/1998 1:46:28 PM Document presentation format: – PowerPoint PPT presentation

Number of Views:188
Avg rating:3.0/5.0
Slides: 61
Provided by: Vlsisystems
Category:

less

Transcript and Presenter's Notes

Title: 3%20%20Process%20and%20Device%20Physics


1
3 Process and Device Physics
  • 1. Quantum-Theoretical Definition of
    Semiconductor
  • 2. PN Diode
  • 3. MOS(Metal-Oxide-Semiconductor) Capacitor
    Theory
  • 4. Ideal MOSFET I-V Relations
  • 5. Actual MOSFET(Secondary Effects)
  • 6. CMOS Process
  • 7. CMOS Layout Design Rules
  • 8. SPICE Model for MOSFET

2
1. Quantum Theoretical Definition of Semiconductor
  • Semiconductor No.1 Property
  • Two charge carriers(electron hole)
    existing in energy bands separated by Eg
  • Two important facts about semiconductor(or
    Semiconducting Crystal) Band Gap Fermi Level
  • Band Gap(between Conduction Valence band)
  • Discrete energy levels in Isolated Quantum Well

Energy level
E0
3
  • Perturbation of discrete energy levels in
    multiple QWs in interacting distance(plus the
    effect of finiteness of energy wall)
  • Energy level becomes Energy band

Eg (Energy Gap)
EF(Fermi Level)
nucleus
  • If the structure is non-periodic, the allowed
    energy levels constitute continuum.

4
Fermi Level(P(EF)0.5 always)
  • According to Fermi-Dirac Statistics, P(E)
    Probability of energy level, E being occupied by
    a particle, is

1

1exp(E-EF)/kT
free electron
empty
T?0
T0
Ec
E
EF
EF
Eg
Ev
hole
0.5
P(E)
E0
full
P(E)
5
Fermi Level(cont)
  • Impurity-doped Semiconductor electron hole
    populations are unbalanced by doping n-type
    p-type atoms, respectively.

(p-type Semiconductor)
Ec
EF
EF
Ev
(n-type Semiconductor)
Deficit of electron hole
Excess electron
Silicon
Phosphorus
Silicon
Boron
(p-type Semiconductor)
(n-type Semiconductor)
6
2. P-N Diode
7
(No Transcript)
8
  • In Equilibrium, particle movement, in macroscopic
    sense, has stopped(i.e., no current flow in case
    of charged particle) therefore Fermi level is
    constant throughout all locations in equilibrium,
    i.e., connected and unbiased

(p-type Semiconductor)
(n-type Semiconductor)
EFN
EFP
Ec
EF
EV
9
Forward bias
VF
Reverse bias
I
VB
VR
V
10
3. MOS Capacitor Theory
  • MOS Capacitor combination of Metal, (Perfect
    Conductor), Oxide(Perfect Insulator in DC Sense,
    and good Dielectric in AC sense), and
    Semiconductor substrate.

(Oxide)
(M)
(O)
(S)
? S,P
? M
? S,P
? M
Ec
EFM
EFS,P
(metal)
EV
V0
(p-type silicon)
separation
Deple -tion Region
Minimal energy an electron needs to escape
from inside metal(silicon) to air
P-Si
?M(? S)
V
11
  • Flat-band voltage(VFB)

Qfc
VFB ?MS -
flat-band condition
Cox
?MS ?M - ?S(Work Function Difference) Qfc
Fixed charge per area Cox Oxide capacitance per
unit area
VVFB
12
  • Threshold voltage (VT)

Inversion condition
QB Cox
Xd
VT VFB 2?F
Ec
Ei - EF q
?s
?F
Ei
?F
EF
QB charge per unit surface area qNAXD
(M)
(O)
(P-Si)
X0
13
From Gauss Theorem, ??D ??E - ?(x)
As ,
14
VBS Bulk(Substrate) to Source (reverse) bias
voltage
body effect constant
15
  • Surface Conditions Accumulation - Flat-Band -
    Inversion

VltVFB
VgtVT
VVFB
4)
1) VVFB
3)
xd
2) V0
Xd,max
2)
3) VVT
1)
4) VgtVT
1, 2 immobile charge(ionized impurity) 3, 4
mobile charge(electron)
16
Capacitance-Voltage Plot (C/V Plot)
vo _at_ -jwRCvi
voµC
Low frequency, or MOSFET structure
(w ltltgeneration rate)
High frequency pulsed V(deep depletion)
n
p
n diffusion prompt supplier of electron
Thermal generation of e,h-pair
17
4. Ideal MOSFET I/V Relations
n-ch MOSFET
n
n
p-sub
p-ch MOSFET
p
p
n-sub
18
Enhancement-type MOSFET vs. Depletion-type
Enhancement
VDD gt 0
VDD lt 0
(NMOS)
(PMOS)
ID
VGS
VT lt 0
VGS gt 0
VGS lt 0
ID lt 0
ID gt 0
VGS
ID
VT gt 0
NMOS
PMOS
Depletion
(PMOS)
(NMOS)
VGS
VT gt 0
ID
ID
VGS
VT lt 0
19
MOSFET I/V Relation
i) cutoff region VGS ltVT ID0
W
L
ii) nonsaturation(or triode) region
VGS?VT, OltVDS?VGS-VT
N
N
dV(x) dx
IDSW?nQn(x)
Gate
Drain
Source
Qn(x) of electrons per unit surface area ?n
electron mobility V(x) surface potential at x
QnCox(VGS -VT-VDS)
QnCox(VGS-VT)
Qn(X)qCOX(VGS-VT-V(X))
20
Integrating both sides of
IDS
where
Material
process
Layout geometry
Short
Long-channel
Pinch-off point
IDS
(VGS-VT)
(VDS)
21
IDS
  • ii) Linear Region, VDS ? ?(0.1V)
  • IDS?(VGS-VT)VDS analog multiplier
  • iii) Saturation Region
  • - MOSEF is called Square-Law Device
  • - Remember ?q?nCoxW/L, where ?n ?

VGS
VDS
For VDS?VGS-VT indep. of VDS
(surface scattering)
Actually less than square
22
Two causes for current saturation
  • i) Pinch-off in long-channel device
  • ii) Velocity saturation in short-channel device

v?E
v
v?E E ? Ecrit
vsat
vvsat E gt Ecrit
Ecrit
E
23
5. Actual MOSFET(Secondary Effect)
  • Threshold voltage variations
  • i) Body effect(Substrate bias)
  • ex.1 Series-connected MOSFETs
  • - NMOSFET in 2-input NAND-gate
  • - PMOSFET in 2-input NOR-gate
  • VT of A-NMOS VT of
    A-PMOS depend on VY

VDD
VDD
X
A
Y
B
24
ii) -DVT due to Short-Channel effect iii
) DVT due to Narrow-Channel effect(?)
VT
L(channel length)
(effective) charge per unit surface area
25
iv) Drain-Induced Barrier Lowering(DIBL) for
small L ? can lead to Punch-through
ex. DRAM cell leakage current depends on the
voltage on the data line
VT
VDS
26
Channel Length Modulation
LMASK
L
Xj
aXj
D L
VDS
LAMBDA(SPICE Level1 model parameter)
27
Subthreshold Current
  • Actually MOSFET is conducting also below VGS lt VT
  • Subthreshold or weak inversion condition
  • ID exp , Vth , 0 lt ? lt 1
  • Reducing VT according to VDD down - scaling
    yields high subthreshold current.

ln ID
VGS
28
Effect of Source, Drain Resistance
RD

-
VGS
Silicidation reduces polysilicon gate
resistance as well as RS, RD
RS
29
Hot Electron Effect
  • For submicron MOSFET, electron becomes hot due
    to strong E(electric field) ? 104 V/cm 1V/?m
  • E is very high near the drain junction
  • LDD(Lightly-Doped Drain) MOSFET is effective for
    reducing the E-field near drain junction.
  • Hot electron captured in the gate oxide through
    tunneling causes VT instability(threshold drift).

n
n
n
n
n-
LDD-MOSFET
30
CMOS Latchup
  • i) When Rnwell Rpsubs 0
  • latchup is impossible
  • ii) When Rnwell Rpsubs ?
  • ?n? ?p ? 1 causes latchup
  • iii) When 0 lt Rnwell, Rpsubs lt ?
  • ?n? ?p ? ? (? gt1) causes trouble

31
6. CMOS Process
  • Snapshot of IC fabrication process

32
  • Step 1 Crystal growing(Czochralskis
    method)
  • 2 sawing
  • 3 CMP(Chemical-Mechanical Polish)
  • 4 SiO2-layer growth/Deposit(CVD) or
    Sputtering of poly, SiO2, Si3N4, Al
  • 5 Resist Spin Coat
  • 6 mask exposure
  • 7 Resist develop
  • 8 Oxide etch(using plasma/ion/wet)
  • 9 Ion Implant for Impurity doping
  • 10
  • 11 Strip Resist
  • 12 Strip Oxide

Repeated 12-20 times for a CMOS process
33
Cross-section of MOSFET showing each
layerLOCOS(or Isoplanar) Process for PMOSFET
34
MOSFET Formation Process
  • 1. Field Implant
  • 2. Grow Field Oxide
  • Remove Nitride
  • 3. Form Poly Gate deposit, dope, mask etch
  • 4. Form Source/Drain for
  • n-channel MOSFET
  • n-type substrate contact
  • 5. Form Source/Drain for P-channel MOSFET
    P-type substrate contact





Channel Stop


35
Basic N-well CMOS Process
36
Cross-section of CMOS Inverter in N-well CMOS
Process
37
Substrate Well Contacts
38
Twin-well CMOS
39
CMOS Process Layers
Via 1
40
Mask layer drawn
  • N-well not(P-well) n-diffusion(silicon)
    CAA(mask)
  • Active Pdiff ndiff ? CSN(mask) ?
  • n-diffusion implant grow(ndiff) (?
    CPG(mask)
  • P-diffusion implant grow(Pdiff)

41
(No Transcript)
42
Sheet Resistance
R
process
layout geometry
43
Reducing R with Silicide
  • Silicide a metallic compound of silicon
  • i) polycide reduces Rg
  • ii) salicide reduces Rg, Rs and Rd

Metal (Ti,W,Ta,Co)
poly-Si
deposit, sinter etch
silicide
44
Multi-Level Metalization issues
  • Planarization of surface using CMP(Chemical-Mechan
    ical Polishing)

insulating glass
flat surface after grinding with slurry
rough surface
45
  • Inter-Level Interconnect
  • I) diffusion contact/polysilicon contact using
    barrier metal(platinum)
  • ii) contact plug or via plug Tungsten
  • iii) sandwiched metal layer TiW/AlCu/TiW

46
7. CMOS Layout Design Rules
  • ?-based design rule all dimensions rep. as
    integer times ?, scalable.
  • ex. Mead-Conway rule, MOSIS rev. 4-6
  • ??m-based design rule some dimensions are not
    scalable.
  • ex. Most company(foundry), MOSIS rev.7
  • mixed(??) design rule
  • 3 types of design rules
  • FEOL(Front End of the Line)
  • BEOL(Back End of the Line) metal interconnect
  • Glass layer

47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
(No Transcript)
51
8. SPICE Model for MOSFET
  • SPICE
  • originally developed at Univ. Berkeley
  • now many versions are available, e.g.,HSPICE,
    PSPICE, SmartSPICE, AIMSPICE,
  • Models for R,L,C, VI source, diode, BJT, JFET,
    MOSFET, Transmission lines, MOSFETs, and
    Macros(Behavioral models), etc.
  • Levels
  • Level1(Schichman-Hodges Model) Simple, fast,
    good timing
  • Level2(Grove-Frohman Model) Short, narrow
    channel effect, slow, convergence poor
  • Level3(Empirical Model) Faster than Level2 while
    as accurate, convergence OK
  • Level13(BSIM Model) Now most widely used
  • Level27SOS Model

52
  • MOSFET is defined by
  • MOSFET model element parameters,
  • CAPOP model parameters gate capacitance
  • ACM(Area Calculation Method) model parameters
    diode model
  • Model selection
  • each MOSFET is described by element .MODEL
    statement
  • ex) M3 3 2 1 0 PCH .MODEL PCH PMOS LEVEL13
    ltparametersgt
  • Analysis DC, transient, AC, and noise
  • DC, transient analysis same except the inclusion
    of capacitances
  • AC noise analysis replace Ids by gm, gds
    gmbs where gm , gds

DIds
DIds
DVgs
DVds
53
Equivalent Circuit MOSFET Transient Analysis
54
Equivalent Circuit, MOSFET AC Analysis
55
MOSFET AC Noise Analysis
56
LEVEL 13 BSIM Model
  • Berkeley Short Channel IGFET Model(BSIM)
  • VT VFB fB K1 fBVSB - K2(fBVSB) hVDS
  • Sub-threshold current calculated when NO(ZNO) lt
    200

IlimIexp
IDS (weak-inversion current)
Ilim Iexp
IDS IDS,S IDS,w (continuous 1st
derivative bet. strong weak inversion
region)
57
WREFeff
  • Geometry-sensitivity Factors for Parameter
    Processing
  • A A0 LA0 ( - )
    WA0 ( - )
  • ex) VFB0 - 0.35(volt), LVFB0 -
    0.1(voltmicron), WVFB0 0.08(voltmicron)
    LREFeff 2 micron, WREFeff 10 micron
    zvfb VFB0 LVFB0 WVFB0
  • Model parameters processed according to the
    device size start with z followed by the
    parameter name
  • Bias-Sensitivity Factors( start with c )
  • xu0 zu0 - zx2u0 vsb
  • xu1 zu1 - zx2u1 vsb zx3u1 (vds - VDDM)

1
1
1
1
weff
Leff
LREFeff
58
(No Transcript)
59
??? ??? ?? ?
? ??? ??????? ??. ? ???? ?? ??? ??? ???
??? ????? ?? ??. ?? ???? ???? ??? ??? ?? ?? ???,
??? ??? ???? ? ????? ????. ??? ??? ?? ?? ?? ???
??? ???? ???? ? ???, ??? ??? ?? ??? ??? ?? ?? ???
???.
60
??? ??(?)
??? ??? ?? ? ?? ??? ??, ?? ?? ??? ??? ??? ???
??? ??? ? ??? ???? ??? ??? ?????? ???.
Write a Comment
User Comments (0)
About PowerShow.com