Title: 3%20%20Process%20and%20Device%20Physics
13 Process and Device Physics
- 1. Quantum-Theoretical Definition of
Semiconductor - 2. PN Diode
- 3. MOS(Metal-Oxide-Semiconductor) Capacitor
Theory - 4. Ideal MOSFET I-V Relations
- 5. Actual MOSFET(Secondary Effects)
- 6. CMOS Process
- 7. CMOS Layout Design Rules
- 8. SPICE Model for MOSFET
21. Quantum Theoretical Definition of Semiconductor
- Semiconductor No.1 Property
- Two charge carriers(electron hole)
existing in energy bands separated by Eg - Two important facts about semiconductor(or
Semiconducting Crystal) Band Gap Fermi Level - Band Gap(between Conduction Valence band)
- Discrete energy levels in Isolated Quantum Well
Energy level
E0
3- Perturbation of discrete energy levels in
multiple QWs in interacting distance(plus the
effect of finiteness of energy wall) - Energy level becomes Energy band
Eg (Energy Gap)
EF(Fermi Level)
nucleus
- If the structure is non-periodic, the allowed
energy levels constitute continuum.
4Fermi Level(P(EF)0.5 always)
- According to Fermi-Dirac Statistics, P(E)
Probability of energy level, E being occupied by
a particle, is
1
1exp(E-EF)/kT
free electron
empty
T?0
T0
Ec
E
EF
EF
Eg
Ev
hole
0.5
P(E)
E0
full
P(E)
5Fermi Level(cont)
- Impurity-doped Semiconductor electron hole
populations are unbalanced by doping n-type
p-type atoms, respectively.
(p-type Semiconductor)
Ec
EF
EF
Ev
(n-type Semiconductor)
Deficit of electron hole
Excess electron
Silicon
Phosphorus
Silicon
Boron
(p-type Semiconductor)
(n-type Semiconductor)
62. P-N Diode
7(No Transcript)
8- In Equilibrium, particle movement, in macroscopic
sense, has stopped(i.e., no current flow in case
of charged particle) therefore Fermi level is
constant throughout all locations in equilibrium,
i.e., connected and unbiased
(p-type Semiconductor)
(n-type Semiconductor)
EFN
EFP
Ec
EF
EV
9Forward bias
VF
Reverse bias
I
VB
VR
V
103. MOS Capacitor Theory
- MOS Capacitor combination of Metal, (Perfect
Conductor), Oxide(Perfect Insulator in DC Sense,
and good Dielectric in AC sense), and
Semiconductor substrate.
(Oxide)
(M)
(O)
(S)
? S,P
? M
? S,P
? M
Ec
EFM
EFS,P
(metal)
EV
V0
(p-type silicon)
separation
Deple -tion Region
Minimal energy an electron needs to escape
from inside metal(silicon) to air
P-Si
?M(? S)
V
11Qfc
VFB ?MS -
flat-band condition
Cox
?MS ?M - ?S(Work Function Difference) Qfc
Fixed charge per area Cox Oxide capacitance per
unit area
VVFB
12Inversion condition
QB Cox
Xd
VT VFB 2?F
Ec
Ei - EF q
?s
?F
Ei
?F
EF
QB charge per unit surface area qNAXD
(M)
(O)
(P-Si)
X0
13From Gauss Theorem, ??D ??E - ?(x)
As ,
14VBS Bulk(Substrate) to Source (reverse) bias
voltage
body effect constant
15- Surface Conditions Accumulation - Flat-Band -
Inversion
VltVFB
VgtVT
VVFB
4)
1) VVFB
3)
xd
2) V0
Xd,max
2)
3) VVT
1)
4) VgtVT
1, 2 immobile charge(ionized impurity) 3, 4
mobile charge(electron)
16Capacitance-Voltage Plot (C/V Plot)
vo _at_ -jwRCvi
voµC
Low frequency, or MOSFET structure
(w ltltgeneration rate)
High frequency pulsed V(deep depletion)
n
p
n diffusion prompt supplier of electron
Thermal generation of e,h-pair
174. Ideal MOSFET I/V Relations
n-ch MOSFET
n
n
p-sub
p-ch MOSFET
p
p
n-sub
18Enhancement-type MOSFET vs. Depletion-type
Enhancement
VDD gt 0
VDD lt 0
(NMOS)
(PMOS)
ID
VGS
VT lt 0
VGS gt 0
VGS lt 0
ID lt 0
ID gt 0
VGS
ID
VT gt 0
NMOS
PMOS
Depletion
(PMOS)
(NMOS)
VGS
VT gt 0
ID
ID
VGS
VT lt 0
19MOSFET I/V Relation
i) cutoff region VGS ltVT ID0
W
L
ii) nonsaturation(or triode) region
VGS?VT, OltVDS?VGS-VT
N
N
dV(x) dx
IDSW?nQn(x)
Gate
Drain
Source
Qn(x) of electrons per unit surface area ?n
electron mobility V(x) surface potential at x
QnCox(VGS -VT-VDS)
QnCox(VGS-VT)
Qn(X)qCOX(VGS-VT-V(X))
20Integrating both sides of
IDS
where
Material
process
Layout geometry
Short
Long-channel
Pinch-off point
IDS
(VGS-VT)
(VDS)
21IDS
- ii) Linear Region, VDS ? ?(0.1V)
- IDS?(VGS-VT)VDS analog multiplier
- iii) Saturation Region
- - MOSEF is called Square-Law Device
- - Remember ?q?nCoxW/L, where ?n ?
VGS
VDS
For VDS?VGS-VT indep. of VDS
(surface scattering)
Actually less than square
22Two causes for current saturation
- i) Pinch-off in long-channel device
- ii) Velocity saturation in short-channel device
v?E
v
v?E E ? Ecrit
vsat
vvsat E gt Ecrit
Ecrit
E
235. Actual MOSFET(Secondary Effect)
- Threshold voltage variations
- i) Body effect(Substrate bias)
- ex.1 Series-connected MOSFETs
- - NMOSFET in 2-input NAND-gate
- - PMOSFET in 2-input NOR-gate
- VT of A-NMOS VT of
A-PMOS depend on VY
VDD
VDD
X
A
Y
B
24ii) -DVT due to Short-Channel effect iii
) DVT due to Narrow-Channel effect(?)
VT
L(channel length)
(effective) charge per unit surface area
25iv) Drain-Induced Barrier Lowering(DIBL) for
small L ? can lead to Punch-through
ex. DRAM cell leakage current depends on the
voltage on the data line
VT
VDS
26Channel Length Modulation
LMASK
L
Xj
aXj
D L
VDS
LAMBDA(SPICE Level1 model parameter)
27Subthreshold Current
- Actually MOSFET is conducting also below VGS lt VT
- Subthreshold or weak inversion condition
- ID exp , Vth , 0 lt ? lt 1
- Reducing VT according to VDD down - scaling
yields high subthreshold current.
ln ID
VGS
28Effect of Source, Drain Resistance
RD
-
VGS
Silicidation reduces polysilicon gate
resistance as well as RS, RD
RS
29Hot Electron Effect
- For submicron MOSFET, electron becomes hot due
to strong E(electric field) ? 104 V/cm 1V/?m - E is very high near the drain junction
- LDD(Lightly-Doped Drain) MOSFET is effective for
reducing the E-field near drain junction. - Hot electron captured in the gate oxide through
tunneling causes VT instability(threshold drift).
n
n
n
n
n-
LDD-MOSFET
30CMOS Latchup
- i) When Rnwell Rpsubs 0
- latchup is impossible
- ii) When Rnwell Rpsubs ?
- ?n? ?p ? 1 causes latchup
- iii) When 0 lt Rnwell, Rpsubs lt ?
- ?n? ?p ? ? (? gt1) causes trouble
316. CMOS Process
- Snapshot of IC fabrication process
32- Step 1 Crystal growing(Czochralskis
method) - 2 sawing
- 3 CMP(Chemical-Mechanical Polish)
- 4 SiO2-layer growth/Deposit(CVD) or
Sputtering of poly, SiO2, Si3N4, Al - 5 Resist Spin Coat
- 6 mask exposure
- 7 Resist develop
- 8 Oxide etch(using plasma/ion/wet)
- 9 Ion Implant for Impurity doping
- 10
- 11 Strip Resist
- 12 Strip Oxide
Repeated 12-20 times for a CMOS process
33Cross-section of MOSFET showing each
layerLOCOS(or Isoplanar) Process for PMOSFET
34MOSFET Formation Process
- 1. Field Implant
- 2. Grow Field Oxide
- Remove Nitride
- 3. Form Poly Gate deposit, dope, mask etch
- 4. Form Source/Drain for
- n-channel MOSFET
- n-type substrate contact
- 5. Form Source/Drain for P-channel MOSFET
P-type substrate contact
Channel Stop
35Basic N-well CMOS Process
36Cross-section of CMOS Inverter in N-well CMOS
Process
37Substrate Well Contacts
38Twin-well CMOS
39CMOS Process Layers
Via 1
40Mask layer drawn
- N-well not(P-well) n-diffusion(silicon)
CAA(mask) - Active Pdiff ndiff ? CSN(mask) ?
- n-diffusion implant grow(ndiff) (?
CPG(mask) - P-diffusion implant grow(Pdiff)
41(No Transcript)
42Sheet Resistance
R
process
layout geometry
43Reducing R with Silicide
- Silicide a metallic compound of silicon
- i) polycide reduces Rg
- ii) salicide reduces Rg, Rs and Rd
Metal (Ti,W,Ta,Co)
poly-Si
deposit, sinter etch
silicide
44Multi-Level Metalization issues
- Planarization of surface using CMP(Chemical-Mechan
ical Polishing)
insulating glass
flat surface after grinding with slurry
rough surface
45- Inter-Level Interconnect
- I) diffusion contact/polysilicon contact using
barrier metal(platinum) - ii) contact plug or via plug Tungsten
- iii) sandwiched metal layer TiW/AlCu/TiW
467. CMOS Layout Design Rules
- ?-based design rule all dimensions rep. as
integer times ?, scalable. - ex. Mead-Conway rule, MOSIS rev. 4-6
- ??m-based design rule some dimensions are not
scalable. - ex. Most company(foundry), MOSIS rev.7
- mixed(??) design rule
- 3 types of design rules
- FEOL(Front End of the Line)
- BEOL(Back End of the Line) metal interconnect
- Glass layer
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
518. SPICE Model for MOSFET
- SPICE
- originally developed at Univ. Berkeley
- now many versions are available, e.g.,HSPICE,
PSPICE, SmartSPICE, AIMSPICE, - Models for R,L,C, VI source, diode, BJT, JFET,
MOSFET, Transmission lines, MOSFETs, and
Macros(Behavioral models), etc. - Levels
- Level1(Schichman-Hodges Model) Simple, fast,
good timing - Level2(Grove-Frohman Model) Short, narrow
channel effect, slow, convergence poor - Level3(Empirical Model) Faster than Level2 while
as accurate, convergence OK - Level13(BSIM Model) Now most widely used
- Level27SOS Model
52- MOSFET is defined by
- MOSFET model element parameters,
- CAPOP model parameters gate capacitance
- ACM(Area Calculation Method) model parameters
diode model - Model selection
- each MOSFET is described by element .MODEL
statement - ex) M3 3 2 1 0 PCH .MODEL PCH PMOS LEVEL13
ltparametersgt - Analysis DC, transient, AC, and noise
- DC, transient analysis same except the inclusion
of capacitances - AC noise analysis replace Ids by gm, gds
gmbs where gm , gds
DIds
DIds
DVgs
DVds
53Equivalent Circuit MOSFET Transient Analysis
54Equivalent Circuit, MOSFET AC Analysis
55MOSFET AC Noise Analysis
56LEVEL 13 BSIM Model
- Berkeley Short Channel IGFET Model(BSIM)
- VT VFB fB K1 fBVSB - K2(fBVSB) hVDS
- Sub-threshold current calculated when NO(ZNO) lt
200
IlimIexp
IDS (weak-inversion current)
Ilim Iexp
IDS IDS,S IDS,w (continuous 1st
derivative bet. strong weak inversion
region)
57WREFeff
- Geometry-sensitivity Factors for Parameter
Processing - A A0 LA0 ( - )
WA0 ( - ) - ex) VFB0 - 0.35(volt), LVFB0 -
0.1(voltmicron), WVFB0 0.08(voltmicron)
LREFeff 2 micron, WREFeff 10 micron
zvfb VFB0 LVFB0 WVFB0 - Model parameters processed according to the
device size start with z followed by the
parameter name - Bias-Sensitivity Factors( start with c )
- xu0 zu0 - zx2u0 vsb
- xu1 zu1 - zx2u1 vsb zx3u1 (vds - VDDM)
1
1
1
1
weff
Leff
LREFeff
58(No Transcript)
59??? ??? ?? ?
? ??? ??????? ??. ? ???? ?? ??? ??? ???
??? ????? ?? ??. ?? ???? ???? ??? ??? ?? ?? ???,
??? ??? ???? ? ????? ????. ??? ??? ?? ?? ?? ???
??? ???? ???? ? ???, ??? ??? ?? ??? ??? ?? ?? ???
???.
60??? ??(?)
??? ??? ?? ? ?? ??? ??, ?? ?? ??? ??? ??? ???
??? ??? ? ??? ???? ??? ??? ?????? ???.