Support Vector Regression - PowerPoint PPT Presentation

About This Presentation
Title:

Support Vector Regression

Description:

Title: PowerPoint Presentation Last modified by: Created Date: 1/1/1601 12:00:00 AM Document presentation format: Other titles – PowerPoint PPT presentation

Number of Views:1027
Avg rating:3.0/5.0
Slides: 142
Provided by: readPudnC1
Category:

less

Transcript and Presenter's Notes

Title: Support Vector Regression


1
??? ???????
2
??(1/1)
  • ? ?
  • ??
  • ???????????
  • ?????
  • ???
  • ?????????
  • ?????????
  • ??????????????
  • Support Vector Regression
  • ????

3
1 ??(1/13)
  • 1 ??
  • ??????????????????????,??????????????????,????????
    .
  • ??????????????????????,???????????????,???????????
    ?
  • ??????,???????????,??????????,??????????????,?????
    ????????????????????????
  • ???????????(??)???

4
1 ??(2/13)
  • ????????????,???????(???)?????????,???????????????
    ????,??????????????
  • ??????,????(??)??,??????????????,?????????????,???
    ??????????????????
  • ??,???,???????????????
  • ????,?????????????????????,???????????????
  • ???(??)??????
  • ???????,?ANN
  • ??????

5
1 ??(3/13)
  • A. ???????(??)??????.
  • ???????NN???,???????????????????????.
  • ??????????????,??????,???????(????)????,??????????
    ??.
  • ???????????,
  • ??,???????????,?????????.
  • ??,????????????????????????,????????????????.
  • ???????????????????.

6
1 ??(4/13)
  • ???????,?????????,????????
  • ??????????????,???????????????????????,???????????
    ??????????(???????)???
  • ?????????,???????????????????,????????????????????
    ???,?????????????
  • ??,????????????????ANN??????????????.

7
1 ??(5/13)
  • B. ???????,?ANN.
  • ?????????????????,??????????????.
  • ??,???????????????.
  • C. ??????.
  • ??????????????????????,?????????????????
  • ??,????????????(??????????)????????,??????????????
    ?????
  • ???????????????,???????????????,?????????

8
1 ??(6/13)
  • ??????(Statistical Learning Theory, SLT)
    ???V.Vapnik?60??????????????????,?70??????????????
    ?,???????????????,????????
  • ?90????,?????????????,???NN????????????????,??????
    ??????.

9
1 ??(7/13)
  • SLT???????????????????
  • ????????????
  • ???????VC?,???????????????????????VC?
  • SLT????????,?????????????????????,??????????,?????
    ???,??1992??????????(Support Vector Machine, SVM)
    ???????????????????????.
  • ?????SLT??????????????????????????????,???????????
    ??SVM????????????????,?????????????20????????????

10
1 ??(8/13)
  • SVM????SLT???????????????,??SLT??????,????????.
  • ??( Cristianini Shawe-Taylor ,2000 ) Support
    Vector Machines are a system for efficiently
    training linear learning machines in
    kernel-induced feature spaces, while respecting
    the insights of generalisation theory and
    exploiting optimisation theory.
  • SVM becomes popular because of its success in
    handwritten digit recognition
  • 1.1 test error rate for SVM. This is the same as
    the error rates of a carefully constructed neural
    network, LeNet 4.

11
1 ??(9/13)
  • ??,SVM????????????????????????????.
  • ??,???????,??????????,????????????????????,SVM????
    ????????????????????.
  • SVM is now regarded as an important example of
    kernel methods, arguably the hottest area in
    machine learning.

12
1 ??(10/13)
  • SVMs combine three important ideas
  • Apply optimization algorithms from Operations
    Reseach
  • Linear Programming and Quadratic Programming
  • Implicit feature transformation using kernels
    Implicit feature transformation using kernels
  • Control of overfitting by maximizing the margin

13
1 ??(11/13)
  • ??,?SVM?????????????,??????????.??
  • ???????????????,???????????
  • ??SVM?????????????(????????????????SVM??????????)
  • ????????????VC????????????
  • SVM???????????????????????????.

14
1 ??(12/13)
  • ??,?????????,??SLT?SVM???,???????80????ANN????????
    ????
  • ??,?????,SLT????????????????(????ANN?????????),???
    ??????????????????.
  • ??,??????,SLT?????????????,???????????????????????
    ????

15
1 ??(13/13)
  • ??????SVM,?????
  • ???????????
  • ?????
  • ???
  • ?????????
  • SVM??????????

16
2 SLT?????(1/4)
  • 2 ???????????
  • ????????,??????(SLT)??????????????????????.
  • ???????????????????????,??????????????????????????
    ,?????????????????????.
  • V. Vapnik???????????????????,???????,?????????????
    ,???NN????????????????,SLT????????????.

17
2 SLT?????(2/4)
  • SLT??????
  • ?????????????????????????????
  • ???????????????,??????????????
  • ?????????????????????
  • ????????,??????????????????
  • SVM??,????????????????????

18
2 SLT?????(3/4)
  • SLT?????????VC?(VC Dimension)??,??????????????????
    ?????????????,????????????????????????????????????
    ????.
  • SLT?????????????????,?????????????????????.
  • ?????????????,?????????????????(??NN??????????????
    ?)
  • ??,????????????????????--SVM,?????????????????.

19
2 SLT?????(4/4)
  • ??????,SLT?SVM?????NN??????????,??????????????????
    ?.
  • ????SLT?????,?????
  • ????
  • ???????????
  • ??????????
  • VC????
  • ??????????

20
2.1 ????(1/3)
  • 2.1 ????
  • ??????????????????????????????.
  • ??????????????y?x???????????,????????????F(x,y).
  • ??????????n??????????
  • x1, y1, x2, y2, , xn, yn
  • ?????f(x,w)?,???????f(x,w0)?????????,??????????

21
2.1 ????(2/3)
  • ??w????????
  • f(x,w)???????,????????????.
  • L(y,f(x,w))????f(x,w)?y??????????,????????,L(y,f(x
    ,w))??????

22
2.1 ????(3/3)
  • ????????????????F(x,y),?????????,???????????????,?
    ?????????
  • ????????????????,???????,???R(w)???.

23
2.2 ???????????(1/2)
  • 2.2 ???????????
  • ???????????????,??????????????????????????,???????
    ?????.
  • ?? ???????L(y,w)???????F(y),??????????????????,??
    ??????????

24
2.2 ???????????(2/2)
  • ???????????????????,?????????????L(y,wl),l1,2,,?
    ????????????????????????.
  • ????????????????????,

25
2.3 ??????????(1/3)
  • 2.3 ??????????
  • SLT????? ??????????????????????????,??????.
  • ???,???????????????????????,??????
  • ????Remp(w) ?????R(w)?????1-??????????

??n????, h?????VC?.
26
2.3 ??????????(2/3)
  • ????,???????????????
  • ???????,
  • ?????????(VC confidence).
  • ??????????????????????,?????????????,???????VC?h??
    ????l??.
  • ???????????

???(h,l)??h?????.
27
2.3 ??????????(3/3)
  • ??,?????????,??????????,VC???,???????,????????????
    ??????????.
  • ??????,??VC???????,?????????.

28
2.4 VC????(1/7)
  • 2.4 VC????
  • Anthony?VC????
  • ?F????n????X???0,1????,?F?VC??X???E??????,??E??
  • ????S?E,?????fs?F,???x?S?fs(x)1, x?S?x?E?fs(x)
    0.
  • VC???????F??????,???????,?????????,???????????????
    ?????F????????????????.
  • ??????,???????????,???????VC?????????VC?.

29
2.4 VC????(2/7)
  • ????????????VC??????.
  • ????(dichotomy)???
  • A dichotomy of a set S is a partition of S into
    two disjoint subsets.
  • ??(shatter)???
  • A set of instances S is shattered by hypothesis
    space H if and only if for every dichotomy of S
    there exists some hypothesis in H consistent with
    this dichotomy.

30
2.4 VC????(3/7)
  • VC????
  • ????????,??????h????????????????????2h?????,??????
    ??h?????.
  • ????VC??????????????h.
  • ???????????????????,?????VC??????.
  • ??????VC???????????????????????.

31
2.4 VC????(4/7)
  • ??,??2???????????
  • yw0w1x1w2x2
  • ??????????(??)???????3,?????.
  • ??,????????VC???3.

32
2.4 VC????(5/7)
  • ????,??n???????????
  • yw0w1x1wnxn
  • ?VC??n1.

33
2.4 VC????(6/7)
  • ??,?????,2???????????????????(??)???????4.
  • ??,????????VC???4.

34
2.4 VC????(7/7)
  • VC????????????.
  • ????,VC???????????,????????.
  • ??????????????VC??????,????????????????.
  • ??
  • ?n??????????????????VC??n1,
  • ?f(x,a)sin(ax)?VC??????.
  • ??????????????VC????SLT?????????,

35
2.5 ??????????(1/4)
  • 2.5 ??????????
  • ???NN???,????????????????????,?????,??????????????
    ????????.
  • ?????,??????????,???????,???????????.
  • ???????,??????????????,???????,???????????????????
    ?.
  • ???????????????????????.

36
2.5 ??????????(2/4)
  • ??????BP?????????????????.
  • ??????,?????????????????.
  • ???,????????????????????????,??????????????.
  • ????BP???????????(???,??,???).
  • ??????????,?BP???????,????50?,???????????????????
    ??,??????.
  • ???????

37
2.5 ??????????(3/4)
  • ???????,??????????,????????,???????5????????????,?
    ????????????????????????????.??????????
  • ????(???????)??????????????,???????.
  • ???????????(????????),???????????????.

38
2.5 ??????????(4/4)
  • ?????????,???????????.
  • ??,????????????,?????????????(???????)
  • ?????????????????,?????????????????????????????.
  • ??,????????,?????????????????????????,????????????
    ????,??????????.

39
3 SVM(1/3)
  • 3 ?????
  • SVM??????SLT?VC????????????????,??????????
  • ??????(?????????????)?
  • ????(??????????????)
  • ????????,???????????.
  • SVM??????????
  • ?????????????,?????????????????????????????????

40
3 SVM(2/3)
  • ??????????????????,?????,??????????,????NN????????
    ??????
  • ????????????????????????,?????????????????????????
    ????.
  • ??????????????????????????,?????????????,?????????
    ????.
  • ?SVM???,???????????,??????????????????RBF?????????
    ??????????.

41
3 SVM(3/3)
  • ??????SVM,?????
  • ?????SVM
  • ??????SVM

42
3.1 ?????SVM(1/4)
  • 3.1 ?????SVM
  • ?????????????
  • ?n????m?????(x1,y1), (x2,y2) (xm,ym),
  • ??xi?n????????
  • yi?-1,1????????.???-1??I?,?1??II?.
  • ?????n???????????
  • f(x)wTx-b0
  • ????????

43
3.1 ?????SVM(2/4)
  • ???????,????????????,??????????.
  • ?????,?????????,???????????????????BP??RBF??,?????
    ??
  • ??????????????????????,
  • ????????,????????
  • ???????,???????????
  • ???????,????????
  • ???BP??RBF???,????????????

44
3.1 ?????SVM(3/4)
BP
RBF
45
3.1 ?????SVM(4/4)
  • ?????????????????,??????????????????.
  • ???????.
  • ?????,???????????.
  • ??,???????,????,?????????????????.
  • ????SLT,??????????????????,???SVM.
  • ?????SVM
  • ??????? SVM

46
3.1 ?????SVM--?????SVM(1/5)
  • A. ?????SVM
  • ??SLT,??????????????????,???SVM.
  • SVM????????????
  • ?n????m?????(x1,y1), (x2,y2) (xm,ym),
  • ?????n????????
  • ??????(????)
  • ??????(????)
  • ??????
  • f(x)wTx-b0

47
3.1 ?????SVM --?????SVM(2/5)
  • ?????????,????????,??????????????????????,????????
    ??????????.
  • ????????(b)????(a)?(c)??????,?????????????????????
    ??????.

(c)
(a)
(b)
48
3.1 ?????SVM --?????SVM(3/5)
  • ?????????????????????.?????,
  • ????????????
  • r(wTxb)/w
  • ??,???????????

??????????????? r1/w
49
3.1 ?????SVM --?????SVM(4/5)
  • ??,SVM???????????????????????

????????
  • SVM???????????????,????????,????????????,?????????
    ??.

50
3.1 ?????SVM --?????SVM(5/5)
  • After learning both RBFN and BP decision surfaces
    might not be at the optimal position.
  • For example, as shown in the figure, both
    learning rules will not perform further
    iterations (learning) since the error criterion
    is satisfied

51
3.1 ?????SVM ???????SVM(1/16)
  • B. ???????SVM
  • ????????,?????????????
  • ????.
  • ?????????????????,????????????????.
  • ????????????,???????????

52
3.1 ?????SVM ???????SVM(2/16)
53
3.1 ?????SVM ???????SVM(3/16)
  • ??,??????,?????????????.
  • ??,???????????????,??????????????.
  • ???,???????????????????????????.
  • ???????????????????????????

54
3.1 ?????SVM ???????SVM(4/16)
55
3.1 ?????SVM ???????SVM(5/16)
  • ??????????????????????i,??????????

????????
??,SVM???????????????????
56
3.1 ?????SVM ???????SVM(6/16)
  • ????
  • ??Parameter C is tradeoff parameter between error
    and margin and can be viewed as a way to control
    overfitting.
  • C??,???????,??????????????,???????,?????
  • ??????????????????????The Soft Margin Hyperplane
    incorporating slack variables?

57
3.1 ?????SVM ???????SVM(6/16)
  • ????????????

??????C1?104???????
58
3.1 ?????SVM ???????SVM(7/16)
  • ?????????????,???????????.
  • ??????????
  • ???i??i???????,??
  • ?i, ?i?0
  • ??????????Kuhn-Tucker??,?

59
3.1 ?????SVM ???????SVM(8/16)
60
3.1 ?????SVM ???????SVM(9/16)
  • ??
  • ?????i ,????w,b,?i, ?i

61
3.1 ?????SVM ???????SVM(10/16)
  • ?????????????L?,?
  • ??w,b,?i, ?i????i???,????????i.
  • ??,SVM??????????????????

????????
62
3.1 ?????SVM ???????SVM(11/16)
  • In practice, solving the optimization problem
    involved computing the inner products xiTxj
    between all training points!
  • SVM??????????????????????????????????,?????.
  • ????,????????(??????)?i???,???????????.
  • ????(?i???)??????(?i??)??????

63
3.1 ?????SVM ???????SVM(12/16)
64
3.1 ?????SVM ???????SVM(13/16)
  • ????????????????
  • ????????????????.
  • b?????,??????????(??(1)????)??,??????????????????
    ?.
  • Notice that ???? relies on an inner product
    between the test point x and the support vectors
    (learning sample)xi ?

65
3.1 ?????SVM ???????SVM(14/16)
  • Characteristics of the Solution of SVM are
  • Many of the ai are zero
  • w is a linear combination of a small number of
    data
  • Sparse representation
  • xi with non-zero ai are called support vectors
    (SV)
  • The decision boundary is determined only by the
    SV
  • Let tj (j1, ..., s) be the indices of the s
    support vectors. We can write

66
3.1 ?????SVM ???????SVM(15/16)
  • For testing with a new data z
  • Compute the classifying function
  • and classify z as class 1 if the sum is positive,
    and class 2 otherwise
  • There are theoretical upper bounds on the error
    on unseen data for SVM
  • The larger the margin, the smaller the bound
  • The smaller the number of SV, the smaller the
    bound

67
3.1 ?????SVM ???????SVM(16/16)
  • Note that in both training and testing, the data
    are referenced only as inner product, xi ? xj
  • This is important for generalizing to the
    non-linear case

68
3.2 ??????SVM(1/12)
  • 3.2 ??????SVM
  • ???????????????????,?????????????????????.
  • ???,?????????????????????
  • ????????????????.
  • ??????2???.

69
3.2 ??????SVM(2/12)
  • ????????,?????x???????????H,??H????????.

70
3.2 ??????SVM(3/12)
  • ??????????????????????????,?????
  • ??(Cover's theorem) A complex pattern-classificat
    ion problem cast in a high-dimensional space
    nonlinearly is more likely to be linearly
    separable than in a low-dimensional space.
  • A binary classification is ?-separable if there
    is an m-dimensional function vector ? that cast
    the inputs into a m-dimensional space,
  • where the classification is linearly separable by
    the hyperplane wT?(x) 0, where w is the weight
    vector associated to an output neuron.

71
3.2 ??????SVM(4/12)
  • This hyperplane is called the separation surface
    of the network.
  • A corollary of Cover's theorem
  • Corollary In a space of dimensionality of m, the
    expected maximum number of randomly assigned
    vectors that are linearly separable is 2m.

72
3.2 ??????SVM(5/12)
  • ????
  • ?(x) Rn?H
  • ???x???????H??????.
  • ??????(x)??????x,??????????????????????????????

???????????????
73
3.2 ??????SVM(6/12)
  • ???????,????????????????x??????(x)?????,??????????
    ????(x).
  • ??,???,????????H??????????(x)????,????????????????
    ?????,????????????(x)???.
  • ??????,???????K(xi,xj)?T(xi)?(xj)??Mercer??,?????
    ???????.
  • ??,?????????????????????????????????,???????????.
  • ??????????????????????SVM.

74
3.2 ??????SVM(7/12)
  • SVM??????????????????????????
  • ????????,????????????????,??????????
  • ????????????(???????????),??????????.
  • ??,????????????????????????.
  • SVM????????????NN,???s?????????,??????????????,???
    ??.

75
3.2 ??????SVM(8/12)
76
3.2 ??????SVM(9/12)
  • ?????K(xi,xj),?????SVM????????????????????
  • ??,??????SVM?????????????.
  • In practical use of SVM, only the kernel function
    (and not f(.)) is specified.
  • ????????????????????.

77
3.2 ??????SVM(10/12)
  • ???????????????.
  • ??

??????Lagrange??????
  • ??KKT???

78
3.2 ??????SVM(11/12)
  • ?i (?i ? C ) 0 ? i
  • ??,????????????
  • ??i0, ??i?0, ?i0 ? (Fi?bi)yi?0
  • ?0lt?iltC, ??i0, ?i0 ? (Fi?bi)yi0
  • ??iC, ??i0, ?i?0 ? (Fi?bi)yi?0
  • ??KKT??????????????,????????????????????KKT???????
    ????.

79
3.2 ??????SVM(12/12)
  • Steps for Classification with SVM
  • Prepare the pattern matrix
  • Select the kernel function to use
  • Select the parameter of the kernel function and
    the value of C
  • You can use the values suggested by the SVM
    software, or you can set apart a validation set
    to determine the values of the parameter
  • Execute the training algorithm and obtain the ai
  • Unseen data can be classified using the ai and
    the support vectors

80
4 ???(1/8)
  • 4 ???
  • ??????,SVM???????????????????????????????,????????
    ??????,????????????????????.
  • K(xi,xj)?T(xi)?(xj)????SVM?????????????
  • 1. Must be symmetric
  • K(xi,xj)K(xj,xi)
  • 2. Must satisfy Cauchy-Schwarz inequality
  • K2(xi,xj)?K(xi,xi)K(xj,xj)

81
4 ???(2/8)
  • 3. ??Mercers Theorem,?
  • must be positive semi-definite,
  • ??????,?????????

K(xi,xj)exp-xi-xj2/?2 K(xi,xj)fT(xi)f(xj)
K(xi,xj)K1(xi,xj)K2(xi,xj) K(xi,xj)?K1(xi,xj)
?gt0
82
4 ???(3/8)
  • K(xi,xj)expK1(xi,xj)
  • K(xi,xj)K1(xi,xj)K2(xi,xj)
  • ???????
  • ??????
  • K(x,xi)xTxi
  • ??????
  • K(x,xi)(xTxi1)d
  • ?????d???????

83
4 ???(4/8)
  • ?????
  • K(x,xi)exp-x-xi2/?2
  • ?????????????
  • ??kr(x-xi) ????????????x-xi.
  • ?????,?????sigmoid??
  • K(x,xi)tanh(b1xTxib2)
  • ????????????

84
4 ???(5/8)
  • ?????
  • ??1999?Amari?Wu?????????????,??????????????????,??
    ?????????.
  • ????????,??????????K(xi,xj)???????????(x).
  • ???,?????????,????????????.
  • ?2???????? K(x,xi)(xTxi1)2 ,?????????????(x)?

85
4 ???(6/8)
  • ???,Mercer????????K(xi,xj)???????????(x)????.
  • ??( Mercer??). ???L2???????K(x,z)??????

???k(x)????????,?????????????0?L2??f(x),????
86
4 ???(7/8)
  • ???K(xi,xj)???????????????????????.
  • Kernel function can be thought of as a similarity
    measure between the input objects
  • However, not all similarity measure can be used
    as kernel function.
  • The kernel function needs to satisfy the Mercer
    function, i.e., the function is
    positive-definite
  • This has the consequence that the kernel matrix,
    where the (i,j)-th entry is the K(xi, xj), is
    always positive definite

87
4 ???(8/8)
  • Note that xi needs not be vectorial for the
    kernel function to exist.
  • This opens up enormous opportunities for
    classification with sequences, graphs, etc., by
    SVM

88
5 SVM????(1/3)
  • 5 SVM????
  • ??SVM????????????????????????????????,???,????SVM?
    ????,?????????????????,???????.
  • ??SVM?????????????????????,????????????????,??
  • ????????
  • ???????????
  • ????????
  • ??.

89
5 SVM????(2/3)
  • ????????????????????????????????????
  • ??,SVM??????????????,?????????,???????.
  • ??,????????4000?,???????K(xi,xj)????128???.
  • ??,SVM???????????????????,?????,????????????????.

90
5 SVM????(3/3)
  • SVM????????????????????,??????????????????????????
    ????.
  • ???????????????????
  • ????????????,????????,?????????,???????????????.
  • ???????????????,???????
  • ???
  • ??????????
  • ????????
  • ??????

91
5 SVM????--???(1/2)
  • A. ???
  • ??????????(chunking algorithm).
  • ?????????????,???Lagrange???????????????????.
  • ??????????,?????????????,??????????????,??????????
    ?(?Lagrange??)??.
  • ???????????,???????????????????????????.

92
5 SVM????--???(2/2)
  • ??????
  • ??????????????????,??????????,
  • ???????????????,????????(??????KKT??)???(???????)?
    ??????????????????????,??????.
  • ??????????????.
  • ???????????????????,???????????????.
  • ??,???????????????,???????????,???????????,???????
    ????.

93
5 SVM????--??????????(1/5)
  • B. ??????????
  • ???????????????????????
  • ???????????????????????,????????????????????????
    ??????????????,
  • ???????????????????,????????????,????????????????.

94
5 SVM????--??????????(2/5)
  • ?????????????????????
  • ???????????????????????,
  • ???????????????????????,???????????????,??????????
    ??Lagrange?????????????,????????????0.
  • ??????????????????????????(??????????????).
  • ??,???????????????????????????????????????????.

95
5 SVM????--??????????(3/5)
  • ??????????????Osuna?????,?????????????.??????
  • ??????????B?N,??B????????????SVM??,??N??????Lagran
    ge??????.
  • ??,?????B???Lagrange???????i(??i
    0,i?B)???N????j(??i0,j?N)??,???????????????(????
    ?????)
  • ??,??????????
  • (Fi?bi)yi?0
  • ?,?????????????.

96
5 SVM????--??????????(4/5)
  • ??????????????
  • ????B,?????
  • ????????i,i?B?b,???j0,j?N
  • ??Fj,j?N?????????
  • (Fi?bi)yi?0
  • ???j,?B????i0???i??,???????.
  • Osuna???????????????,?????????????????????????.

97
5 SVM????--??????????(5/5)
  • ??????, Osuna??????B???????.
  • ????????????????,??????B???,?????????.
  • ?????????????B??,????,???????????.
  • ????????B????????????,?????????B??????,????????.

98
5 SVM????--??????(1/5)
  • C. ??????
  • ????,???????????????????????????.
  • Joachims???????????????????????????.
  • ??John C. Platt????????(Sequential Minimal
    Optimization, SMO)??.
  • ????????????????--????.
  • ??????????????????????????????Lagrange??????.

99
5 SVM????--??????(2/5)
  • ????????,???????????????????????,?????????????????
    ??????????????.
  • ??,???????????????????
  • ??,Platt??????????????????????????,???????????????
    ????.
  • ????????????,SMO?????????????.

100
5 SVM????--??????(3/5)
  • ?????????????????,SMO????????????2,???????????????
    ?.
  • ??SMO???????????????????,????????????.
  • ??,SMO????????????????????,??,SMO???????.

101
5 SVM????--??????(4/5)
  • SMO??????????????,??????????.
  • SMO??????????b?,?????????????(?????0lt?iltC???,?????
    ?????),??SMO????????????????????
  • ??,?????????b????????????????????,???b????????????
    ?,????????????????????KKT?????,???????????.

102
5 SVM????--??????(5/5)
  • ????????????????????????.
  • ?????????????????????,???????????,??????????????,
  • ??,???????????????????????,?????????????????????.
  • Freitas???????????????????.

103
5 SVM????--??????(1/9)
  • D. ??????
  • ????SVM??????????,??????????????????.
  • ???????.
  • ??????????????????????,???SVM?????????.
  • ?SVM????,??????,SVM?????????????,?????????????.
  • ??, ???????SVM???????????? ??????
    .

104
5 SVM????--??????(2/9)
  • ??????,???C?i??w?????,?????????????????????yi/C,??
    ???????????????,??????????????,???????????????????
    ???.
  • ??????? (Successive Over Relaxation, SOR)
    ????????????b2,????????????
    ,??????????????.
  • ????????????????????????,??????.
  • ??????????,?????Lagrange???????,?????????????,????
    ?????.

105
5 SVM????--??????(3/9)
  • ????(????,Least Squares,LS)SVM?LS?????SVM?,??????

?????
  • ?????Lagrange??,???KT????,?????????.
  • ???????????????.
  • ??????????????.

106
5 SVM????--??????(4/9)
  • ????(Incremental Learning)??
  • ??????????????????,??????????????????????.
  • ??,????????????????????????????,?????????????.
  • ??SVM??????????????.

107
5 SVM????--??????(5/9)
  • Syed????SVM??????.
  • ??????????????SVM??,????????????????????????,?????
    ???,???????,?????????????,????????.
  • ???????????????.
  • ??????????SVM????,Mettera?????????Adatron????SVM??
    ??,?????????????????????????.
  • ?Adatron???????Kernel-Adatron??,Frieb?????????????
    ??,???????,???????????.

108
5 SVM????--??????(6/9)
  • Cauwenburghs??????????????????????,??????????????L
    agrange????????????????????.
  • ??????????????SVM???????-ISVM.
  • ????????????????????????,?????????????????.
  • Fung???????????SVM.
  • ???????????SVM??,?????????.

109
5 SVM????--??????(7/9)
  • ????
  • ????????????????,?SVM???????????.
  • ????? (Nearest Point Algorithm,
    NPA)????????????,?????????????????????????????????
    ??.
  • ????,?????????,?????????????????,????????????.
  • ???????????????????????.

110
5 SVM????--??????(8/9)
  • ??????????????????SVM??????????Hessian?????.
  • ???????????,???????,???????????????,???????.
  • Fang??????????????,??????????????,?????????SVM????
    ?????.
  • ??????SVM??????????,???????????????????????,??????
    ??.

111
5 SVM????--??????(9/9)
  • A list of SVM implementation can be found at
  • http//www.kernel-machines.org/software.html
  • Some implementation (such as LIBSVM) can handle
    multi-class classification
  • SVMLight is among one of the earliest
    implementation of SVM
  • Several Matlab toolboxes for SVM are also
    available

112
6 SVM????(1/6)
  • 6 ?????????
  • SVMs Key Ideas, main contributions to learning
    theory, are
  • maximize the margin between positive and negative
    examples and optimal classification hyperplane
  • the kernel trick and nonlinear classification
  • non-linear Kernels map examples into a new,
    hihg-dimension space in which these examples are
    linear discriminable.
  • Other contributions are
  • Penalize errors in non-separable case
  • Only the support vectors contribute to the
    solution

113
6 SVM????(2/6)
  • SVM?????
  • ??
  • SVM?????????????????,???????????(?????),??????????
    ???????????????????????.
  • ??????,???????????.
  • ??SVM???????????????,????????????????,??????????.
  • ??SVM?NN?????????.

114
6 SVM????(3/6)
  • Given a kernel and a C, there is one unique
    solution
  • Kernels allow very flexible hypotheses
  • The kernel trick allows for a varying complexity
    of the classifier
  • Training is relatively easy
  • No local optimal, unlike in neural networks
  • Tradeoff between classifier complexity and error
    can be controlled explicitly
  • Non-traditional data like strings and trees can
    be used as input to SVM, instead of feature
    vectors
  • variable-sized hypothesis space sized

115
6 SVM????(4/6)
  • polynomial-time exact optimization rather than
    approximate methods
  • unlike decision trees and neural networks
  • The kernel trick allows for especially engineered
    representations for problems
  • No strict data model is required (when you can
    assume it, then use it)
  • The foundation of the SVC is pretty solid (when
    the slack-variables are not used)
  • An error estimate is available using just the
    training data (but it is a pretty loose estimate,
    and cross-validation is still required to
    optimize K or C)

116
6 SVM????(5/6)
  • ??
  • Need to choose a good kernel function
  • ???????????????F,????F???????????????,??????????.
  • Very large problems are computationally
    intractable
  • The kernel and C have to be optimized
  • ?????????,SVM????????????????????????.

117
6 SVM????(6/6)
  • ???????????,????????,?????????,???????????????????
    ??,????????????????(although more and more
    specialized optimizers appear).
  • ??????O(m3)
  • problems with more than 20,000 examples are very
    difficult to solve
  • ??????O(m2)
  • ???SVM?????. 
  • Batch algorithm
  • The SVC tends to have problems with highly
    overlapping classes

118
7 SVM??????????(1/7)
  • 7 SVM??????????
  • SVM?????
  • ??????
  • ????????SVM??????,???????????????????????????????.
  • ????????
  • SVM??????????,?????????????????.
  • ??K(K????)?SVM??????????????????,????SVM??????????
    ??,??????????.

119
7 SVM??????????(2/7)
  • SVM????????
  • ????SVM?????,????SVM?????.
  • ???????
  • ???SVM????????????????,?????????????????????,?????
    ??,????????????.
  • SVM??????
  • ????SVM?????????,????SVM?????,?SVM?QP????????.
  • ?SVM??????,????SVM?????????,????SVM?????,?SVM?QP??
    ??????.

120
7 SVM??????????(3/7)
  • ????
  • ??,SVM??????(Batch Learning),??SVM???????????????.
  • ??,????,?????????????.
  • ???SVM????????????????????????,?SVM????????????.
  • ??????SVM,?????????,?????????????,?????????????.
  • ???????,????????????????LS-SVM.

121
7 SVM??????????(4/7)
  • LS-SVR????????????????????,????????,??????????????
    ???????.
  • ??????????????,LS-SVM??????????????,?????,????????
    ?.
  • ??????????????????,?????????,????????????.
  • ??,??????????????????,?LS-SVM??????????,Suyken????
    ??????,????????.
  • ????,???????????,????????????????.

122
7 SVM??????????(5/7)
  • ??,????LS-SVM?????--???????(Vector Base
    LearningVBL)?????????SVM???????.
  • ?????(Base Vector SetsBVS)?????????,?????????????
    ???????,????????????????LS-SVM?????????????,??????
    ?????????????.
  • SVM?????
  • ????
  • ????????NN???????,??????NN?????,??????????????????
    On-line????,?????????????.

123
7 SVM??????????(6/7)
  • ????
  • ????SVM?????????????????????????,????????,
  • ??????????????interesting??
  • 3D object recognition
  • ????????
  • ??????
  • ????
  • Stock forecasting
  • Intrusion Detection Systems (IDSs)
  • Image classification

124
7 SVM??????????(7/7)
  • Detecting Steganography in digital images
  • Medical applications diagnostics, survival rates
    ...
  • Technical Combustion Engine Knock Detection
  • Elementary Particle Identification in High Energy
    Physics
  • Bioinformatics protein properties, genomics,
    microarrays
  • Information retrieval, text categorization
  • In the following web, more SVM applications can
    be found
  • http//www.clopinet.com/isabelle/Projects/SVM/appl
    ist.html

125
8 Support Vector Regression(1/15)
  • 8 Support Vector Regression
  • ???????????????????,???????????.
  • ?????????????????,????????????????.
  • ??????????????????????????,????????????.
  • ??????????????????????(??????)??????????????????,?
    ????.
  • ??,??????,??????????????????.

126
8 Support Vector Regression(2/15)
  • ????????????,??SVM???,??????????????????????????(
    Support Vector Regression,SVR)?.
  • SVR??????
  • nonlinear regression the with approximation of
    kernel function
  • Linear regression in feature space
  • Unlike in least square regression, the error
    function is e-insensitive loss function
  • Intuitively, mistake less than e is ignored
  • This leads to sparsity similar to SVM

127
8 Support Vector Regression(3/15)
  • ??LS?????SVR?????????????????.

128
8 Support Vector Regression(4/15)
129
8 Support Vector Regression(5/15)
  • ????LS????,?????????

130
8 Support Vector Regression(6/15)
  • ????-insensitive???SVR????,?????????

131
8 Support Vector Regression(7/15)
  • ????SVR??
  • Given a data set x1, ..., xn with target
    values u1, ..., un, we want to do e-SVR
  • The optimization problem is

132
8 Support Vector Regression(8/15)
  • ??C is a parameter to control the amount of
    influence of the error
  • The ½w2 term serves as controlling the
    complexity of the regression function
  • This is similar to ridge regression.
  • Similar to SVM, this can be solved as a quadratic
    programming problem

133
8 Support Vector Regression(9/15)
  • Similar to SVM, the SVR optimization problem can
    be solved by the Lagrange method as follows
  • ???i, ?i, ?i??i???????,??
  • ?i, ?i, ?i, ?i?0
  • ??????????Kuhn-Tucker??,?

134
8 Support Vector Regression(10/15)
135
8 Support Vector Regression(11/15)
  • ??,??
  • ?????i, ?i,????w,b,?i, ?i, ?i, ?i

136
8 Support Vector Regression(12/15)
  • ?????????????L?,?

??w,b,?i, ?i, ?i, ?i????i, ?i???,????????i??i.
137
8 Support Vector Regression(13/15)
  • ??,SVM??????????????????????????

????????
138
8 Support Vector Regression(14/15)
  • ????????????????

????????????????.
139
8 Support Vector Regression(15/15)
  • Similar to SVM, foe the nonlinear regressiove
    peoblem, the regressive function with the kernel
    function is as foloows.
  • ??K(x,z)????.
  • ???SVR?????????,??????????
  • ?????
  • ???
  • ???

140
????(1/2)
  • ????
  • 1 B.E. Boser et al. A Training Algorithm for
    Optimal Margin Classifiers. Proceedings of the
    Fifth Annual Workshop on Computational Learning
    Theory 5 144-152, Pittsburgh, 1992.
  • 2 L. Bottou et al. Comparison of classifier
    methods a case study in handwritten digit
    recognition. Proceedings of the 12th IAPR
    International Conference on Pattern Recognition,
    vol. 2, pp. 77-82.
  • 3 V. Vapnik. The Nature of Statistical Learning
    Theory. 2nd edition, Springer, 1999.
  • 4 C. Burges. A tutorial on support vector
    machines for pattern recognition. Data Mining and
    Knowledge Discovery, 2(2)955-974, 1998.
  • 5 N. Cristianini and J. Shawe-Taylor. An
    introduction to support vector machines,
    Cambridge University Press. 2000.

141
????(2/2)
  • ????(?)
  • 6 A. J. Smola and B. Schölkopf. A Tutorial on
    Support Vector Regression. NeuroCOLT Technical
    Report NC-TR-98-030, Royal Holloway College,
    University of London, UK, 1998.
  • 7 Feng J., and Williams P. M. (2001) The
    generalization error of the symmetric and scaled
    support vector machine IEEE T. Neural Networks
    Vol.  12, No. 5.  1255-1260
  • 8 http//www.kernel-machines.org/
  • 9 http//svmlight.joachims.org
  • 10 http//www.support-vector.net/
  • 11 http//www.clopinet.com/isabelle/Projects/SVM
    /
Write a Comment
User Comments (0)
About PowerShow.com