Title: Draw-Bend%20Fracture%20Prediction%20with%20Dual-Phase%20Steels
1Draw-Bend Fracture Prediction with Dual-Phase
Steels
R. H. Wagoner September 25, 2012 AMPT Wollongong
, Australia
2Outline
- Background Shear Fracture, 2006
-
- DBF Results Simulations, 2011
- Intermediate Conclusions
- Practical Application, 2012
- Ideal DBF Test
- Recommended Procedure
- No Ideal Test?
- Results,
- Recommended Procedure
2
3- Background Shear Fracture, 2006
3
4Shear Fracture of AHSS 2005 Case
Jim Fekete et al, AHSS Workshop, 2006
5Shear Fracture of AHSS - 2011
Forming Technology Forum 2012 Web site
http//www.ivp.ethz.ch/ftf12
6Unpredicted by FEA / FLD
Stoughton, AHSS Workshop, 2006
6
7Shear Fracture Related to Microstructure?
Ref AISI AHSS Guidelines
8Conventional Wisdom, 2006
- Shear fracture
- is unique to AHSS (maybe only DP steels)
- occurs without necking (brittle)
- is related to coarse, brittle microstructure
- is time/rate independent
- Notes
- All of these based on the A/SP stamping trials,
2005. - All of these are wrong.
- Most talks assume that these are true, even
today.
9NSF Workshop on AHSS (October 2006)
70
L-IP
60
AUST. SS
TWIP
50
IF
IF- HS
Elongation ()
40
Elongation ()
Mild
ISO
ISO
30
BH
TRIP
CMn
20
HSLA
DP, CP
10
MART
0
0
600
1200
300
900
1600
600
Tensile Strength (MPa)
R. W. Heimbuch An Overview of the Auto/Steel
Partnership and Research Needs 1
9
9
9
10- 2. DBF Results Simulations, 2011
10
11References DBF Results Simulations
J. H. Kim, J. H. Sung, K. Piao, R. H. Wagoner
The Shear Fracture of Dual-Phase Steel, Int. J.
Plasticity, 2011, vol. 27, pp. 1658-1676. J. H.
Sung, J. H. Kim, R. H. Wagoner A Plastic
Constitutive Equation Incorporating Strain,
Strain-Rate, and Temperature, Int. J. Plasticity,
2010, vol. 26, pp. 1746-1771. J. H. Sung, J. H.
Kim, R. H. Wagoner The Draw-Bend Fracture Test
(DBF) and Its Application to DP and TRIP Steels,
Trans. ASME J. Eng. Mater. Technol., (in press)
11
12DBF Failure Types
Type I Tensile failure (unbent region) Type
II Shear failure (not Type I or III) Type III
Shear failure (fracture at the roller)
12
13 DBF Test Effect of R/t
13
14H/V Constitutive Eq. Large-Strain Verification
14
15FE Simulated Tensile Test H/V vs. H, V
15
16Predicted ef, H/V vs. H, V 3 alloys, 3
temperatures
Standard deviation of ef simulation vs.
experiment
Hollomon Voce H/V
DP590 0.05 (23) 0.05 (20) 0.02 (7)
DP780 0.03 (18) 0.04 (22) 0.01 (6)
DP980 0.04 (30) 0.03 (21) 0.01 (5)
16
17FE Draw-Bend Model Thermo-Mechanical (T-M)
U2, V2
hmetal,air 20W/m2K
- Abaqus Standard (V6.7)
- 3D solid elements (C3D8RT), 5 layers
- Von Mises, isotropic hardening
- Symmetric model
m 0.04
hmetal,metal 5kW/m2K
Kim et al., IDDRG, 2009
U1, V1
18Front Stress vs. Front Displacement
18
19Displacement to Maximum Front Load vs. R / t
19
20- Is shear fracture of AHSS
- brittle or ductile?
20
21Fracture Strains DP 780 (Typical)
21
22Fracture Strains TWIP 980 (Exceptional)
22
23Directional DBF DP 780 (Typical)
23
24Directional DBF Formability DP980 (Exceptional)
24
25Interim Conclusions
- Shear fracture occurs by plastic localization.
- Deformation-induced heating dominates the error
in predicting shear failures. - Brittle cracking can occur. (Poor microstructure
or exceptional tensile ductility, e.g. TWIP). - T-dependent constitutive equation is essential.
- Shear fracture is predictable plastically.
- (Challenges solid elements, T-M model.)
25
26- 3. Practical Application - 2012
26
27DBF/FE vs. Industrial Practice/FE
Ind. Plane strain High rate Adiabatic FE
Shell Isothermal Static
DBF General strain Moderate
rates Thermo-mech. FE Solid element Thermo-mech
.
27
28Ideal DBF Test Plane Strain, High Rate
28
29Ideal Test Results - Stress
29
30Ideal Test Results - Strain
30
31How to Use Practically Bend, Unbend Regions
31
32Practical Application of SF FLD (1) Direct
For each element in contact Known R, t ?
emembrane Predicted Fracture eFEA gt
emembrane
32
33Practical Application of SF FLD (2) Indirect
For each element drawn over contact Known (R,
t)contact ? Pmax ? sPS tension ? ePS tension
Predicted Fracture eFEA gt ePS tension
Wu, Zhou, Zhang, Zhou, Du, Shi SAE 2006-01-0349.
33
34Calculation Indirect Method
34
35Recommended Procedure with Industrial FEA
- Use adiabatic law in FEA, use rate sensitivity
- Classify each element based on X-Y position
(tooling) - Bend (plane-strain)
- After bend (plane-strain)
- General (not Bend, not After)
- Apply 4 criteria
- FLD (Bend, After)
- Direct SF (Bend)
- Indirect SF (After)
- Brittle Fracture (All?)
35
36- 4. No Ideal Test?
- (What to do?)
36
37What is Needed?
emembrane f(R/t) (PS, high-speed DBF)
Pmax f(R/t) (PS, high-speed DBF)
37
38FE Plane Strain DBF Model
m 0.06
U2, V2 0
- Abaqus Standard (V6.7)
- Plane strain solid elements (CPE4R), 5 layers
- Von Mises, isotropic hardening
- Isothermal, Adiabatic, Thermo-Mechanical
U1, V1
39Adiabatic Constitutive Equation
39
40Peak Stress, Plane-Strain DP980
40
41Membrane Strains at Maximum Load
41
42Analytical Model Model vs. Fit
42
43Analytical Model Model vs. Fit
43
44Conclusions
- Shear fracture is predictable with careful
testing or careful constitutive modeling and FEA. - Shear fracture occurs by plastic localization.
- Shear fracture is an inevitable consequence of
draw-bending mechanics. All materials. - Brittle fracture can occur, but is unusual. (Poor
microstructure or v. high tensile tensile limit,
e.g. TWIP). - T-dependent constitutive equation is essential
for AHSS because of high plastic work. (But
probably not Al or many other alloys.)
44
4545
46References
- R. H. Wagoner, J. H. Kim, J. H. Sung
Formability of Advanced High Strength Steels,
Proc. Esaform 2009, U. Twente, Netherlands, 2009
(CD) - J. H. Sung, J. H. Kim, R. H. Wagoner A Plastic
Constitutive Equation Incorporating Strain,
Strain-Rate, and Temperature, Int. J. Plasticity,
(accepted). - A.W. Hudgins, D.K. Matlock, J.G. Speer, and C.J.
Van Tyne, "Predicting Instability at Die Radii in
Advanced High Strength Steels," Journal of
Materials Processing Technology, vol. 210,
2010, pp. 741-750. - J. H. Kim, J. Sung, R. H. Wagoner
Thermo-Mechanical Modeling of Draw-Bend
Formability Tests, Proc. IDDRG Mat. Prop. Data
for More Effective Num. Anal., eds. B. S. Levy,
D. K. Matlock, C. J. Van Tyne, Colo. School
Mines, 2009, pp. 503-512. (ISDN
978-0-615-29641-8) - R. H. Wagoner and M. Li Simulation of
Springback Through-Thickness Integration, Int.
J. Plasticity, 2007, Vol. 23, Issue 3, pp.
345-360. - M. R. Tharrett, T. B. Stoughton Stretch-bend
forming limits of 1008 AK steel, SAE technical
paper No.2003-01-1157, 2003. - M. Yoshida, F. Yoshida, H. Konishi, K. Fukumoto
Fracture Limits of Sheet Metals Under Stretch
Bending, Int. J. Mech. Sci., 2005, 47, pp.
1885-1896.
46
4747
48DP Steels
48
49H/V Constitutive Framework
Special
Standard
Sung et al., Int. J. Plast. 2010
50Simulated D-B Test Effect of Draw Speed
50
51DBF Formability DP980(A), RD vs. TD (Typical)
Directional Formability TDRD
51
52DBF Formability DP980(D), RD vs. TD
(Exceptional)
Directional Formability RDgtTD
52
53Analytical Model Curvilinear Derivation
Fracture Criterion Fracture occurs at Tmax for
given R, to
53
54DBF Interpretation Plane-strain vs. Tension
54
55Inner and Outer Strains at Maximum Load
55
56Membrane Strains (R/t Affected Only)
56
57R/t-Affected Membrane Strains vs. t/R
57
58Forming Limit Diagram
Ref Hosford Duncan
58
59PS T-M Model Model vs. Fit
59
60PS T-M Model Model vs. Fit
60
61Draw-Bend Fracture Test (DBF) V1, V2 Constant
190.5 mm
Start
444.5 mm (10)
V2 aV1
Max. Finish
R
190.5 mm
Specimen width 25mm Tool radius choices
2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 9/16, 12/16
inch 3.2, 4.8, 6.4, 7.9, 9.5, 11.1,
14.3, 19 mm a V2/V1 0 and 0.3
444.5 mm(10)
Start
uf
V1
Max. Finish
Wagoner et al., Esaform, 2009
61
62AHSS vs. HSLA
Ref AISI AHSS Guidelines
62