Draw-Bend%20Fracture%20Prediction%20with%20Dual-Phase%20Steels - PowerPoint PPT Presentation

About This Presentation
Title:

Draw-Bend%20Fracture%20Prediction%20with%20Dual-Phase%20Steels

Description:

Title: No Slide Title Author: user Last modified by: Robert H. Wagoner Created Date: 7/25/2002 5:50:01 PM Document presentation format: On-screen Show (4:3) – PowerPoint PPT presentation

Number of Views:225
Avg rating:3.0/5.0
Slides: 63
Provided by: liMitEdu8
Learn more at: http://li.mit.edu
Category:

less

Transcript and Presenter's Notes

Title: Draw-Bend%20Fracture%20Prediction%20with%20Dual-Phase%20Steels


1
Draw-Bend Fracture Prediction with Dual-Phase
Steels
R. H. Wagoner September 25, 2012 AMPT Wollongong
, Australia
2
Outline
  • Background Shear Fracture, 2006
  • DBF Results Simulations, 2011
  • Intermediate Conclusions
  • Practical Application, 2012
  • Ideal DBF Test
  • Recommended Procedure
  • No Ideal Test?
  • Results,
  • Recommended Procedure

2
3
  • Background Shear Fracture, 2006

3
4
Shear Fracture of AHSS 2005 Case
Jim Fekete et al, AHSS Workshop, 2006
5
Shear Fracture of AHSS - 2011
Forming Technology Forum 2012 Web site
http//www.ivp.ethz.ch/ftf12
6
Unpredicted by FEA / FLD
Stoughton, AHSS Workshop, 2006
6
7
Shear Fracture Related to Microstructure?
Ref AISI AHSS Guidelines
8
Conventional Wisdom, 2006
  • Shear fracture
  • is unique to AHSS (maybe only DP steels)
  • occurs without necking (brittle)
  • is related to coarse, brittle microstructure
  • is time/rate independent
  • Notes
  • All of these based on the A/SP stamping trials,
    2005.
  • All of these are wrong.
  • Most talks assume that these are true, even
    today.

9
NSF Workshop on AHSS (October 2006)
70
L-IP
60
AUST. SS
TWIP
50
IF
IF- HS
Elongation ()
40
Elongation ()
Mild
ISO
ISO
30
BH
TRIP
CMn
20
HSLA
DP, CP
10
MART
0
0
600
1200
300
900
1600
600
Tensile Strength (MPa)
R. W. Heimbuch An Overview of the Auto/Steel
Partnership and Research Needs 1
9
9
9
10
  • 2. DBF Results Simulations, 2011

10
11
References DBF Results Simulations
J. H. Kim, J. H. Sung, K. Piao, R. H. Wagoner
The Shear Fracture of Dual-Phase Steel, Int. J.
Plasticity, 2011, vol. 27, pp. 1658-1676. J. H.
Sung, J. H. Kim, R. H. Wagoner A Plastic
Constitutive Equation Incorporating Strain,
Strain-Rate, and Temperature, Int. J. Plasticity,
2010, vol. 26, pp. 1746-1771. J. H. Sung, J. H.
Kim, R. H. Wagoner The Draw-Bend Fracture Test
(DBF) and Its Application to DP and TRIP Steels,
Trans. ASME J. Eng. Mater. Technol., (in press)
11
12
DBF Failure Types
Type I Tensile failure (unbent region) Type
II Shear failure (not Type I or III) Type III
Shear failure (fracture at the roller)
12
13
DBF Test Effect of R/t
13
14
H/V Constitutive Eq. Large-Strain Verification
14
15
FE Simulated Tensile Test H/V vs. H, V
15
16
Predicted ef, H/V vs. H, V 3 alloys, 3
temperatures
Standard deviation of ef simulation vs.
experiment
Hollomon Voce H/V
DP590 0.05 (23) 0.05 (20) 0.02 (7)
DP780 0.03 (18) 0.04 (22) 0.01 (6)
DP980 0.04 (30) 0.03 (21) 0.01 (5)
16
17
FE Draw-Bend Model Thermo-Mechanical (T-M)
U2, V2
hmetal,air 20W/m2K
  • Abaqus Standard (V6.7)
  • 3D solid elements (C3D8RT), 5 layers
  • Von Mises, isotropic hardening
  • Symmetric model

m 0.04
hmetal,metal 5kW/m2K
Kim et al., IDDRG, 2009
U1, V1
18
Front Stress vs. Front Displacement
18
19
Displacement to Maximum Front Load vs. R / t
19
20
  • Is shear fracture of AHSS
  • brittle or ductile?

20
21
Fracture Strains DP 780 (Typical)
21
22
Fracture Strains TWIP 980 (Exceptional)
22
23
Directional DBF DP 780 (Typical)
23
24
Directional DBF Formability DP980 (Exceptional)
24
25
Interim Conclusions
  • Shear fracture occurs by plastic localization.
  • Deformation-induced heating dominates the error
    in predicting shear failures.
  • Brittle cracking can occur. (Poor microstructure
    or exceptional tensile ductility, e.g. TWIP).
  • T-dependent constitutive equation is essential.
  • Shear fracture is predictable plastically.
  • (Challenges solid elements, T-M model.)

25
26
  • 3. Practical Application - 2012

26
27
DBF/FE vs. Industrial Practice/FE
Ind. Plane strain High rate Adiabatic FE
Shell Isothermal Static
DBF General strain Moderate
rates Thermo-mech. FE Solid element Thermo-mech
.
27
28
Ideal DBF Test Plane Strain, High Rate
28
29
Ideal Test Results - Stress
29
30
Ideal Test Results - Strain
30
31
How to Use Practically Bend, Unbend Regions
31
32
Practical Application of SF FLD (1) Direct
For each element in contact Known R, t ?
emembrane Predicted Fracture eFEA gt
emembrane
32
33
Practical Application of SF FLD (2) Indirect
For each element drawn over contact Known (R,
t)contact ? Pmax ? sPS tension ? ePS tension
Predicted Fracture eFEA gt ePS tension
Wu, Zhou, Zhang, Zhou, Du, Shi SAE 2006-01-0349.
33
34
Calculation Indirect Method
 
34
35
Recommended Procedure with Industrial FEA
  • Use adiabatic law in FEA, use rate sensitivity
  • Classify each element based on X-Y position
    (tooling)
  • Bend (plane-strain)
  • After bend (plane-strain)
  • General (not Bend, not After)
  • Apply 4 criteria
  • FLD (Bend, After)
  • Direct SF (Bend)
  • Indirect SF (After)
  • Brittle Fracture (All?)

35
36
  • 4. No Ideal Test?
  • (What to do?)

36
37
What is Needed?
emembrane f(R/t) (PS, high-speed DBF)
Pmax f(R/t) (PS, high-speed DBF)
37
38
FE Plane Strain DBF Model
m 0.06
U2, V2 0
  • Abaqus Standard (V6.7)
  • Plane strain solid elements (CPE4R), 5 layers
  • Von Mises, isotropic hardening
  • Isothermal, Adiabatic, Thermo-Mechanical

U1, V1
39
Adiabatic Constitutive Equation
39
40
Peak Stress, Plane-Strain DP980
40
41
Membrane Strains at Maximum Load
41
42
Analytical Model Model vs. Fit
42
43
Analytical Model Model vs. Fit
43
44
Conclusions
  • Shear fracture is predictable with careful
    testing or careful constitutive modeling and FEA.
  • Shear fracture occurs by plastic localization.
  • Shear fracture is an inevitable consequence of
    draw-bending mechanics. All materials.
  • Brittle fracture can occur, but is unusual. (Poor
    microstructure or v. high tensile tensile limit,
    e.g. TWIP).
  • T-dependent constitutive equation is essential
    for AHSS because of high plastic work. (But
    probably not Al or many other alloys.)

44
45
  • Thank you.

45
46
References
  • R. H. Wagoner, J. H. Kim, J. H. Sung
    Formability of Advanced High Strength Steels,
    Proc. Esaform 2009, U. Twente, Netherlands, 2009
    (CD)
  • J. H. Sung, J. H. Kim, R. H. Wagoner A Plastic
    Constitutive Equation Incorporating Strain,
    Strain-Rate, and Temperature, Int. J. Plasticity,
    (accepted).
  • A.W. Hudgins, D.K. Matlock, J.G. Speer, and C.J.
    Van Tyne, "Predicting Instability at Die Radii in
    Advanced High Strength Steels," Journal of
    Materials Processing Technology,  vol. 210,
    2010,  pp. 741-750.
  • J. H. Kim, J. Sung, R. H. Wagoner
    Thermo-Mechanical Modeling of Draw-Bend
    Formability Tests, Proc. IDDRG Mat. Prop. Data
    for More Effective Num. Anal., eds. B. S. Levy,
    D. K. Matlock, C. J. Van Tyne, Colo. School
    Mines, 2009, pp. 503-512. (ISDN
    978-0-615-29641-8)
  • R. H. Wagoner and M. Li Simulation of
    Springback Through-Thickness Integration, Int.
    J. Plasticity, 2007, Vol. 23, Issue 3, pp.
    345-360.
  • M. R. Tharrett, T. B. Stoughton Stretch-bend
    forming limits of 1008 AK steel, SAE technical
    paper No.2003-01-1157, 2003.
  • M. Yoshida, F. Yoshida, H. Konishi, K. Fukumoto
    Fracture Limits of Sheet Metals Under Stretch
    Bending, Int. J. Mech. Sci., 2005, 47, pp.
    1885-1896.

46
47
  • Extra Slides

47
48
DP Steels
48
49
H/V Constitutive Framework
Special
Standard
Sung et al., Int. J. Plast. 2010
50
Simulated D-B Test Effect of Draw Speed
50
51
DBF Formability DP980(A), RD vs. TD (Typical)
Directional Formability TDRD
51
52
DBF Formability DP980(D), RD vs. TD
(Exceptional)
Directional Formability RDgtTD
52
53
Analytical Model Curvilinear Derivation
Fracture Criterion Fracture occurs at Tmax for
given R, to
53
54
DBF Interpretation Plane-strain vs. Tension
54
55
Inner and Outer Strains at Maximum Load
55
56
Membrane Strains (R/t Affected Only)
56
57
R/t-Affected Membrane Strains vs. t/R
57
58
Forming Limit Diagram
Ref Hosford Duncan
58
59
PS T-M Model Model vs. Fit
59
60
PS T-M Model Model vs. Fit
60
61
Draw-Bend Fracture Test (DBF) V1, V2 Constant
190.5 mm
Start
444.5 mm (10)
V2 aV1
Max. Finish
R
190.5 mm
Specimen width 25mm Tool radius choices
2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 9/16, 12/16
inch 3.2, 4.8, 6.4, 7.9, 9.5, 11.1,
14.3, 19 mm a V2/V1 0 and 0.3
444.5 mm(10)
Start
uf
V1
Max. Finish
Wagoner et al., Esaform, 2009
61
62
AHSS vs. HSLA
Ref AISI AHSS Guidelines
62
Write a Comment
User Comments (0)
About PowerShow.com