Title: INSTANTON%20PARTITION%20FUNCTIONS
1INSTANTON PARTITION FUNCTIONS
- Nikita Nekrasov
- IHES (Bures-sur-Yvette) ITEP (Moscow)
- QUARKS-2008
- May 25, 2008
2Biased list of refs
- NN, NN, A.Aleksandrov2008
- NN, A.Marshakov2006
- A.Iqbal, NN, A.Okounkov, C.Vafa2004
- A.Braverman 2004
- NN, A.Okounkov 2003
- H.Nakajima, K.Yoshioka 2003
- A.Losev, NN, A.Marshakov 2002
- NN, 2002
- A.Schwarz, NN, 1998
- G.Moore, NN, S.Shatashvili 1997-1998
- A.Losev, NN, S.Shatashvili 1997-1998
- A.Gerasimov, S.Shatashvili 2006-2007
3Mathematical problemcounting
4Mathematical problemcounting
5Mathematical problemcounting
- Partitions of integers
- (1) (2) (1,1) (3) (2,1)
(1,1,1)
6Mathematical problemcounting
- Partitions of integers
- (1) (2) (1,1) (3) (2,1)
(1,1,1)
7Mathematical problemgenerating functions
8Mathematical problemgenerating functions
9Mathematical problemgenerating functions
Euler
10Unexpected symmetry
Dedekind eta
11More structureArms, legs, and hooks
12Growth process
13Plancherel measure
14Mathematical problemcounting
- Plane partitions of integers
- ((1))
- ((2)),((1,1)),((1),1)
- ((3)),((2,1)),((1,1,1)),((2),(1)),((1),(1),(1)).
15Mathematical problemcounting
- Plane partitions of integers
- ((1))
- ((2)),((1,1)),((1),1)
- ((3)),((2,1)),((1,1,1)),((2),(1)),((1),(1),(1)).
16Mathematical problemgenerating functions
MacMahon
17Mathematical problemmore structural counting
18Quantum gauge theory
Four dimensions
19Quantum gauge theory
Four dimensions
20Quantum sigma model
Two dimensions
21Quantum sigma model
Two dimensions
22Instantons
- Minimize Euclidean action in a given topology of
the field configurations
Gauge instantons
(Almost) Kahler target sigma model instantons
23Counting Instantons
Approximation for ordinary theories. Sometimes
exact results for supersymmetric theories.
24Counting Instantons
Approximation for ordinary theories. Sometimes
exact results for supersymmetric theories.
25Instanton partition functions in four dimensions
- Supersymmetric N4 theory (Vafa-Witten)
26Instanton partition functions in four dimensions
- Supersymmetric N4 theory (Vafa-Witten)
Transforms nicely under a (subgroup of) SL(2, Z)
27Instanton partition functions in four dimensions
- Supersymmetric N4 theory (Vafa-Witten)
Transforms nicely under a (subgroup of) SL(2, Z)
Hidden elliptic curve
28Instanton partition functions in four dimensions
- Supersymmetric N2 theory
-
(Donaldson-Witten)
Intersection theory on the moduli space of gauge
instantons
29Instanton partition functions in four dimensions
- Supersymmetric N2 theory
-
(Donaldson-Witten)
Donaldson invariants of four-manifolds
Seiberg-Witten invariants of four-manifolds
30Instanton partition functions in four dimensions
- Supersymmetric N2 theory
- On Euclidean space R4
31Instanton partition functions in four dimensions
- Supersymmetric N2 theory
- On Euclidean space R4
- Boundary conditions at infinity
- SO(4) Equivariant theory
32Instanton partition function
Supersymmetric N2 theory on Euclidean space R4
33Instanton partition function
Supersymmetric pure N2 super YM theory on
Euclidean space R4
Degree Element of the ring of fractions of
H(BH) H G X SO(4), G - the gauge group
34Instanton partition function
Supersymmetric N2 super YM theory with matter
35Instanton partition function
Supersymmetric N2 super YM theory with matter
36Instanton partition function
Supersymmetric N2 super YM theory with matter
Bundle of Dirac Zero modes In the
instanton background
37Instanton partition function
Explicit evaluation using localization
For pure super Yang-Mills theory
38Instanton partition function
Compactification of the instanton moduli space
to
Add point-like instantons extra stuff
39Instanton partition function
40Instanton partition function
For G U(N)
41Instanton partition function
Perturbative part (contribution of a trivial
connection) For G U(N)
42Instanton partition function
Instanton part For G U(N)
Sum over N-tuples of partitions
43Instanton partition function
44Instanton partition function
45Instanton partition function
46Instanton partition function
47Instanton partition function
48Instanton partition function
49Instanton partition function
Emerging geometry
50Instanton partition function
Emerging algebraic geometry
51Instanton partition function
NNA.Okounkov
Emerging algebraic geometry
52Instanton partition function
NNA.Okounkov
Seiberg-Witten geometry
53Instanton partition function
Seiberg-Witten geometry
Integrability Toda chain, Calogero-Moser
particles, spin chains
Hitchin system
54Instanton partition function
- The full instanton sum has a
- hidden
- infinite dimensional symmetry algebra
55Instanton partition function
- Special rotation parameters
- SU(2) reduction
56Instanton partition function
- Fourier transform
- (electric-magnetic duality)
57Instanton partition function
- Fourier transform
- (electric-magnetic duality)
58Instanton partition function
- Free fermion representation
J(z) form level 1 affine su(N) current algebra
59Instanton partition function
- Free fermion representation
60Instanton partition function
- Theory with matter in
- adjoint representaton
That elliptic curve again
61Instanton partition function
- Abelian theory with matter in
- adjoint representaton
- back to hooks
62Instanton partition function
- Amazingly this partition function
- is also almost modular
63Instanton partition function
- Full-fledged partition function
- Generic rotations and fifth dimension
- K-theoretic version
64Instanton partition function
- Free field representation
- Infinite product formula
65Instanton partition function
- Free fields and modularity
- Infinite product of theta functions
66Instanton partition function
- Free field representation
- Second quantization representation
67Instanton partition function
- Free field representation
- Second quantization representation
Bosons () and fermions (-)
68Instanton partition function
- Free fields? Where? What kind?
69M-theory to the rescue
- The kind of instanton counting
- we encountered
- occurs naturally in the theory of
- D4 branes in IIA string theory
- to which D0 branes
- (codimension 4 defects, just like instantons)
- can bind
70M-theory to the rescue
71M-theory to the rescue
SU(4) rotation
D4 branes
D0s
72M-theory to the rescue
Lift to M-theory
M5 brane wrapped on R4 X elliptic curve
D4 brane
D0s become
NNE.Witten
Free fields the tensor multiplet of (2,0)
supersymmetry
The modularity of the partition function is
the consequence of the general covariance of
the six dimensional theory
73M-theory to the rescue
In the limit
The partition function becomes that of a free
chiral boson on elliptic curve
To visualize this boson deform R4 to Taub-Nut
space The tensor field gets a normalizable
localized mode
74Higher dimensional perspective on the gauge
instanton counting
Complicated hook measure on Partitions comes from
simple Uniform measure on plane (3d) partitions
75Higher dimensional perspective on the gauge
instanton counting
Complicated hook measure on Partitions comes from
simple Uniform measure on plane (3d) partitions
What is the physics of this relation?
76Gauge theory low energy limit of string theory
compactification
77Gauge theory low energy limit of string theory
compactification
X
78Instanton partition function String instanton
partition function
79Instanton partition function String instanton
partition function
80Instanton partition function forgauge group G
String instanton partition function for special X
Local CYs Geometric enigneering Katz, Klemm, Vafa
81Instanton partition function forgauge group G
String instanton partition function for special X
Kontsevichs moduli space of stable maps
82String instanton partition function for CY X
counting holomorphic curves on X
83String instanton partition function for CY X
counting holomorphic curves on X Gromov-Witten
theory
84Counting holomorphic curves on X (GW theory)
Counting equations describing holomorphic curves
(ideal sheaves)
85Counting equations describing holomorphic curves
(ideal sheaves)Donaldson-Thomas theory
86For special X, e.g. toric,Donaldson-Thomas
theorycan be done using localizationsum over
fixed points toric ideal sheaves
87Simplest toric X C3toric ideal sheaves
monomial ideals
88Monomial ideals three dimensional partitions
89Monomial ideals three dimensional partitions
90Topological vertex
91Equivariant vertex(beyond CY)
92K-theoreticEquivariant vertex(beyond string
theory CY)
93The case of C3
- Contribution of a
- three dimensional partition
94The case of C3
- Contribution of a
- three dimensional partition
95The case of C3
- Contribution of a
- three dimensional partition
96The case of C3
Counts bound states of D0s and a D6 brane
97The partition functionhas a free field
realization
98The partition functionSpecial limits
99The partition functionSpecial limits
If, in addition
100The partition functionSpecial limits
If, in addition
Our good old MacMahon friend
101The partition functionSecond quantization
102Explanation via M-theory
Type IIA realization
103Explanation via M-theory
Lift to M-theory
104Explanation via M-theory
Deform TN to R4
R10 rotated over the circle SU(5) rotation
105Explanation via M-theory
Free fields linearized supergravity multiplet
NNE.Witten
106Instanton partition functions
- Generalize most known special functions
(automorphic forms) - Obey interesting differential and difference
equations - Relate combinatorics, algebra, representation
theory and geometry string theory and gauge
theory - Might teach us about the nature
-
of M-theory