INSTANTON%20PARTITION%20FUNCTIONS - PowerPoint PPT Presentation

About This Presentation
Title:

INSTANTON%20PARTITION%20FUNCTIONS

Description:

adjoint representaton. That elliptic curve again. Instanton partition function ... adjoint representaton: back to hooks. Instanton partition function ... – PowerPoint PPT presentation

Number of Views:164
Avg rating:3.0/5.0
Slides: 107
Provided by: niki90
Category:

less

Transcript and Presenter's Notes

Title: INSTANTON%20PARTITION%20FUNCTIONS


1
INSTANTON PARTITION FUNCTIONS
  • Nikita Nekrasov
  • IHES (Bures-sur-Yvette) ITEP (Moscow)
  • QUARKS-2008
  • May 25, 2008

2
Biased list of refs
  • NN, NN, A.Aleksandrov2008
  • NN, A.Marshakov2006
  • A.Iqbal, NN, A.Okounkov, C.Vafa2004
  • A.Braverman 2004
  • NN, A.Okounkov 2003
  • H.Nakajima, K.Yoshioka 2003
  • A.Losev, NN, A.Marshakov 2002
  • NN, 2002
  • A.Schwarz, NN, 1998
  • G.Moore, NN, S.Shatashvili 1997-1998
  • A.Losev, NN, S.Shatashvili 1997-1998
  • A.Gerasimov, S.Shatashvili 2006-2007

3
Mathematical problemcounting
  • Integers 1,2,3,.

4
Mathematical problemcounting
  • Integers 1,2,3,.

5
Mathematical problemcounting
  • Partitions of integers
  • (1) (2) (1,1) (3) (2,1)
    (1,1,1)

6
Mathematical problemcounting
  • Partitions of integers
  • (1) (2) (1,1) (3) (2,1)
    (1,1,1)

7
Mathematical problemgenerating functions
8
Mathematical problemgenerating functions
9
Mathematical problemgenerating functions
Euler
10
Unexpected symmetry
Dedekind eta
11
More structureArms, legs, and hooks
12
Growth process
13
Plancherel measure
14
Mathematical problemcounting
  • Plane partitions of integers
  • ((1))
  • ((2)),((1,1)),((1),1)
  • ((3)),((2,1)),((1,1,1)),((2),(1)),((1),(1),(1)).

15
Mathematical problemcounting
  • Plane partitions of integers
  • ((1))
  • ((2)),((1,1)),((1),1)
  • ((3)),((2,1)),((1,1,1)),((2),(1)),((1),(1),(1)).

16
Mathematical problemgenerating functions
MacMahon
17
Mathematical problemmore structural counting
18
Quantum gauge theory
Four dimensions
19
Quantum gauge theory
Four dimensions
20
Quantum sigma model
Two dimensions
21
Quantum sigma model
Two dimensions
22
Instantons
  • Minimize Euclidean action in a given topology of
    the field configurations

Gauge instantons
(Almost) Kahler target sigma model instantons
23
Counting Instantons
Approximation for ordinary theories. Sometimes
exact results for supersymmetric theories.
24
Counting Instantons
Approximation for ordinary theories. Sometimes
exact results for supersymmetric theories.
25
Instanton partition functions in four dimensions
  • Supersymmetric N4 theory (Vafa-Witten)

26
Instanton partition functions in four dimensions
  • Supersymmetric N4 theory (Vafa-Witten)

Transforms nicely under a (subgroup of) SL(2, Z)
27
Instanton partition functions in four dimensions
  • Supersymmetric N4 theory (Vafa-Witten)

Transforms nicely under a (subgroup of) SL(2, Z)
Hidden elliptic curve
28
Instanton partition functions in four dimensions
  • Supersymmetric N2 theory

  • (Donaldson-Witten)

Intersection theory on the moduli space of gauge
instantons
29
Instanton partition functions in four dimensions
  • Supersymmetric N2 theory

  • (Donaldson-Witten)

Donaldson invariants of four-manifolds
Seiberg-Witten invariants of four-manifolds
30
Instanton partition functions in four dimensions
  • Supersymmetric N2 theory
  • On Euclidean space R4

31
Instanton partition functions in four dimensions
  • Supersymmetric N2 theory
  • On Euclidean space R4
  • Boundary conditions at infinity
  • SO(4) Equivariant theory

32
Instanton partition function
Supersymmetric N2 theory on Euclidean space R4
33
Instanton partition function
Supersymmetric pure N2 super YM theory on
Euclidean space R4
Degree Element of the ring of fractions of
H(BH) H G X SO(4), G - the gauge group
34
Instanton partition function
Supersymmetric N2 super YM theory with matter
35
Instanton partition function
Supersymmetric N2 super YM theory with matter
36
Instanton partition function
Supersymmetric N2 super YM theory with matter
Bundle of Dirac Zero modes In the
instanton background
37
Instanton partition function
Explicit evaluation using localization
For pure super Yang-Mills theory
38
Instanton partition function
Compactification of the instanton moduli space
to
Add point-like instantons extra stuff
39
Instanton partition function
40
Instanton partition function
For G U(N)
41
Instanton partition function
Perturbative part (contribution of a trivial
connection) For G U(N)
42
Instanton partition function
Instanton part For G U(N)
Sum over N-tuples of partitions
43
Instanton partition function
  • Generalized growth model

44
Instanton partition function
  • Generalized growth model

45
Instanton partition function
  • Generalized growth model

46
Instanton partition function
  • Generalized growth model

47
Instanton partition function
  • Generalized growth model

48
Instanton partition function
  • Generalized growth model

49
Instanton partition function
  • Limit shape

Emerging geometry
50
Instanton partition function
  • Limit shape

Emerging algebraic geometry
51
Instanton partition function
  • Limit shape

NNA.Okounkov
Emerging algebraic geometry
52
Instanton partition function
  • Limit shape

NNA.Okounkov
Seiberg-Witten geometry
53
Instanton partition function
  • Limit shape

Seiberg-Witten geometry
Integrability Toda chain, Calogero-Moser
particles, spin chains
Hitchin system
54
Instanton partition function
  • The full instanton sum has a
  • hidden
  • infinite dimensional symmetry algebra

55
Instanton partition function
  • Special rotation parameters
  • SU(2) reduction

56
Instanton partition function
  • Fourier transform
  • (electric-magnetic duality)

57
Instanton partition function
  • Fourier transform
  • (electric-magnetic duality)

58
Instanton partition function
  • Free fermion representation

J(z) form level 1 affine su(N) current algebra
59
Instanton partition function
  • Free fermion representation

60
Instanton partition function
  • Theory with matter in
  • adjoint representaton

That elliptic curve again
61
Instanton partition function
  • Abelian theory with matter in
  • adjoint representaton
  • back to hooks

62
Instanton partition function
  • Amazingly this partition function
  • is also almost modular

63
Instanton partition function
  • Full-fledged partition function
  • Generic rotations and fifth dimension
  • K-theoretic version

64
Instanton partition function
  • Free field representation
  • Infinite product formula

65
Instanton partition function
  • Free fields and modularity
  • Infinite product of theta functions

66
Instanton partition function
  • Free field representation
  • Second quantization representation

67
Instanton partition function
  • Free field representation
  • Second quantization representation

Bosons () and fermions (-)
68
Instanton partition function
  • Free fields? Where? What kind?

69
M-theory to the rescue
  • The kind of instanton counting
  • we encountered
  • occurs naturally in the theory of
  • D4 branes in IIA string theory
  • to which D0 branes
  • (codimension 4 defects, just like instantons)
  • can bind

70
M-theory to the rescue
71
M-theory to the rescue
SU(4) rotation
D4 branes
D0s
72
M-theory to the rescue
Lift to M-theory
M5 brane wrapped on R4 X elliptic curve
D4 brane
D0s become
NNE.Witten
Free fields the tensor multiplet of (2,0)
supersymmetry
The modularity of the partition function is
the consequence of the general covariance of
the six dimensional theory
73
M-theory to the rescue
In the limit
The partition function becomes that of a free
chiral boson on elliptic curve
To visualize this boson deform R4 to Taub-Nut
space The tensor field gets a normalizable
localized mode
74
Higher dimensional perspective on the gauge
instanton counting
Complicated hook measure on Partitions comes from
simple Uniform measure on plane (3d) partitions
75
Higher dimensional perspective on the gauge
instanton counting
Complicated hook measure on Partitions comes from
simple Uniform measure on plane (3d) partitions
What is the physics of this relation?
76
Gauge theory low energy limit of string theory
compactification
77
Gauge theory low energy limit of string theory
compactification
X
78
Instanton partition function String instanton
partition function
79
Instanton partition function String instanton
partition function
80
Instanton partition function forgauge group G
String instanton partition function for special X
Local CYs Geometric enigneering Katz, Klemm, Vafa
81
Instanton partition function forgauge group G
String instanton partition function for special X
Kontsevichs moduli space of stable maps
82
String instanton partition function for CY X
counting holomorphic curves on X
83
String instanton partition function for CY X
counting holomorphic curves on X Gromov-Witten
theory
84
Counting holomorphic curves on X (GW theory)
Counting equations describing holomorphic curves
(ideal sheaves)
85
Counting equations describing holomorphic curves
(ideal sheaves)Donaldson-Thomas theory
86
For special X, e.g. toric,Donaldson-Thomas
theorycan be done using localizationsum over
fixed points toric ideal sheaves
87
Simplest toric X C3toric ideal sheaves
monomial ideals
88
Monomial ideals three dimensional partitions
89
Monomial ideals three dimensional partitions
90
Topological vertex
91
Equivariant vertex(beyond CY)
92
K-theoreticEquivariant vertex(beyond string
theory CY)
93
The case of C3
  • Contribution of a
  • three dimensional partition

94
The case of C3
  • Contribution of a
  • three dimensional partition

95
The case of C3
  • Contribution of a
  • three dimensional partition

96
The case of C3
  • The partition function

Counts bound states of D0s and a D6 brane
97
The partition functionhas a free field
realization
98
The partition functionSpecial limits
99
The partition functionSpecial limits
If, in addition
100
The partition functionSpecial limits
If, in addition
Our good old MacMahon friend
101
The partition functionSecond quantization
102
Explanation via M-theory
Type IIA realization
103
Explanation via M-theory
Lift to M-theory
104
Explanation via M-theory
Deform TN to R4
R10 rotated over the circle SU(5) rotation
105
Explanation via M-theory
Free fields linearized supergravity multiplet
NNE.Witten
106
Instanton partition functions
  • Generalize most known special functions
    (automorphic forms)
  • Obey interesting differential and difference
    equations
  • Relate combinatorics, algebra, representation
    theory and geometry string theory and gauge
    theory
  • Might teach us about the nature

  • of M-theory
Write a Comment
User Comments (0)
About PowerShow.com