Title: Unconventional superconductivity
1Unconventional superconductivity Some of my
favorite topics
M. Sigrist
ETH Zurich
Outline
Sr2RuO4 - order parameter symmetry and
consequences chirality,
spin-orbit coupling, inhomogeneous
3K-phase T-violating superconductivity flux
dynamics
2Sr2RuO4 - Analog of 3He
Tc 1.5 K
Y. Maeno, G. Bednorz et al. 1994
Sr2RuO4
Sr
Quasi-2D strongly correlated Fermi liquid
3Symmetry of the superconducting state
4Two-component order parametern
5Sr2RuO4 a two-component superconductor
Spin triplet superconducting phase
Analog to A-phase of superfluid 3He
orbital angular momentum
chiral p-wave state
6Mixed state - Vortex lattice
Standard vortex lattice
Triangular Abrikosov vortex lattice
7Non-resonant ultrasound absorption
Single-component order parameter
only coupling to longitudinal sound modes
8Chiral pairing
9Topology of the gap function
ky
ei?
?
kx
Phase winding around the Fermi surface
? changes by 2???or -2?
broken parity and time reversal symmetry
chirality
10Gapless Chiral Edge States
Andreev bound states - a link to the IQHE
surface
SC
11Edge states in tunneling
Surface state are observable in tunneling Surface
density of state
Honerkamp, Matsumoto MS Yamashiro, Tanaka et al.
1217
Time reversal symmetry breaking phase
and
Cooper pairs with an angular momentum or chirality
magnetic moment !?
13Spontaneous magnetism
Zero-field muon spin relaxation
Muon spin depolarized by random Internal field
Magnetism generated by superconductivity (0.1 -
1 Gauss)
Luke, Uemura et al.
14Sr2RuO4 Inhomogeneous 3 Kelvin -phase
153-Kelvin phase
Sr2RuO4 with excess Ru-metal inclusions
Onset of inhomogeneous superconductivity close to
3 K 3-Kelvin phase
resistivity
Ru-metal Tc 0.5 K
?m-size Ru-inclusions
Nucleation of superconductivity on the
interface between Ru and Sr2RuO4?
Maeno et al
163-Kelvin phase - nucleation at the interface
Monien MS
17Capillary and frustration effect
Lowest energy with same phase Josephson coupling
18Upper critical field Hc2
19Upper critical field Hc2
20Remarks
Sr2RuO4
Two-component order parameter
complex phenomenology
21Fractional vortices and the dynamics of flux
lines
with D. Agterberg
22Superconductors with multi-component order
parameters
Multiple phase transitions
Broken time reversal symmetry
Heavy Fermion SC U1-xThxBe13, UPt3 ,
Maple et al. (2002)
Fisher et al. (1989)
Ott et al. (1985)
Chiral superconducting phase
23Domain walls
24Topological defects
two degenerate phases
domains and domain walls
Order parameter
??
??
kxiky
kx-iky
x
25Domain wall defects - Bloch line
two-component order parameter
sphere
26Structure of domain wall vortex
Ueda, Rice MS
relative phase
27Stability of fractional vortices
decay of conventional vortex
??
??
??
stable
stable
stable
stable
metastable
R
28Domain walls as vortex sheet
29Domain wall as a vortex sheet
vortex trapped on domain wall
30Vortex sheet barrier and flux dynamics
Fractional vortices strongly pinned on domain wall
Depinning requires recombination
maximal fractional vortex density
finite barrier height
31Experimental situation
32Unusual flux creep behavior
Kim-Anderson
with
33Vortex sheet barrier and flux dynamics
Fractional vortices strongly pinned on domain wall
Depinning requires recombination
maximal fractional vortex density
finite barrier height
34Noisy hysteresis in UPt3
Low-temperature phase with more than one component
Superconducting double transition
35Noise due to moveable barriers
Bean profile with domain walls
several avalanches
36Are domain walls really important ?
Field cooling yields single-domain phase ! ?
Zero-field cooling (ZFC)
vanishing flux creep
Field-cooling (FC)
ordinary flux creep
no domains no effect
Dumont Mota
37Remarks
Multi-component order parameters allow for
fractional vortices which can be stabilized on
domain walls in degenerate phases
Domain walls appear as intrinsic pinning
structures for vortices
Modified vortex dynamics due to domain walls
Additional flux pinning without change of
critical depinning current