MultiDimensional Data Visualization - PowerPoint PPT Presentation

1 / 65
About This Presentation
Title:

MultiDimensional Data Visualization

Description:

'position' is 1st in Cleveland's rules. Uniform treatment of ... Complex glyphs: For each location, show vis of all attributes. Multi-Dimensional. Functions ... – PowerPoint PPT presentation

Number of Views:600
Avg rating:3.0/5.0
Slides: 66
Provided by: chris78
Category:

less

Transcript and Presenter's Notes

Title: MultiDimensional Data Visualization


1
Multi-Dimensional Data Visualization
  • CS 5764 Information Visualization
  • Chris North

2
Review
  • What is the Visualization Pipeline?
  • What are the 2 steps of Visual Mapping?
  • What is Shneidermans Info Vis Mantra?
  • What are Clevelands rules?

3
Where are we?
  • Tabular (multi-dimensional)
  • Spatial Temporal
  • 1D / 2D
  • 3D
  • Networks
  • Trees
  • Graphs
  • Text Documents
  • Fundamentals
  • Navigation strategies
  • Overview strategies
  • Interaction techniques
  • Design
  • Development
  • Evaluation

4
The Simple Stuff
  • Univariate
  • Bivariate
  • Trivariate

5
Univariate
  • Dot plot
  • Bar chart (item vs. attribute)
  • Tukey box plot
  • Histogram

6
Bivariate
  • Scatterplot

7
Trivariate
  • 3D scatterplot, spin plot
  • 2D plot size (or color)

8
Multi-Dimensional Data
  • Each attribute defines a dimension
  • Small of dimensions easy
  • Data mapping, Clevelands rules
  • What about many dimensional data? n-D

What does 10-D space look like?
9
Map n-D space onto 2-D screen
  • Visual representations
  • Complex glyphs
  • E.g. star glyphs, faces, embedded visualization,
  • Multiple views
  • E.g. plot matrices, brushing histograms,
    Spotfire,
  • Non-orthogonal axes
  • E.g. Parallel coords, star coords,
  • Tabular layout
  • E.g. TableLens,
  • Interactions
  • Dynamic Queries
  • Brushing Linking
  • Selecting for details,

10
Glyphs Chernoff Faces
  • 10 Parameters
  • Head Eccentricity
  • Eye Eccentricity
  • Pupil Size
  • Eyebrow Slope
  • Nose Size
  • Mouth Vertical Offset
  • Eye Spacing
  • Eye Size
  • Mouth Width
  • Mouth Openness
  • http//hesketh.com/schampeo/projects/Faces/chernof
    f.html

11
Glyphs Stars
d1
d2
d7
d3
d6
d4
d5
12
Multiple Views withBrushing-and-linking
13
Scatterplot Matrix
  • All pairs of attributes
  • Brushing and linking
  • http//noppa5.pc.helsinki.fi/koe/3d3.html

14
on steroids
15
Different Arrangements of Axes
  • Axes are good
  • Lays out all points in a single space
  • position is 1st in Clevelands rules
  • Uniform treatment of dimensions
  • Space gt 3D ?
  • Must trash orthogonality

16
Parallel Coordinates
  • Inselberg, Multidimensional detective
    (parallel coordinates)

17
Parallel Coordinates
  • Forget about Cartesian orthogonal axes
  • (0,1,-1,2)

x
y
z
w
0
0
0
0
18
Star Plot
1
8
2
7
3
4
6
5
Parallel Coordinates with axes arranged radially
19
Star Coordinates
  • Kandogan, Star Coordinates

20
Star Coordinates
  • Cartesian Star Coordinates

P(v1,v2,v3,v4,v5,v6,v7,v8)
P(v1, v2)
d1
d1
d8
d2
v3
v4
p
v2
v1
v5
v2
d7
d3
d2
p
v1
v8
v6
v7
d6
d4
  • Mapping
  • Items ? dots
  • S attribute vectors ? (x,y)

d5
21
Analysis
22
Table Lens
  • Rao, Table Lens

23
FOCUS / InfoZoom
  • Spenke, FOCUS

24
VisDB Pixel Bar Charts
  • Keim, VisDB

25
Comparison of Techniques
26
Comparison of Techniques
  • ParCood lt1000 items, lt20 attrs
  • Relate between adjacent attr pairs
  • StarCoord lt1,000,000 items, lt20 attrs
  • Interaction intensive
  • TableLens similar to par-coords
  • more items with aggregation
  • Relate 1m attrs (sorting), short learn time
  • Visdb 100,000 items with 10 attrs
  • Itemsattrs screenspace, long learn time,
    must query
  • Spotfire lt1,000,000 items, lt10 attrs (DQ many)
  • Filtering, short learn time

27
Scaling up further
  • Beyond 20 dimensions?
  • Interaction
  • E.g. Offload some dims to Dynamic Query sliders,
  • Reduce dimensionality of the data
  • E.g. Multi-dimensional scaling (MDS) later
  • Visualize features of the dimensions, instead of
    the data
  • E.g. rank-by-feature

28
Rank-by-Feature
  • Seo, et al.

29
Combining multiple data types
  • Multi-Dimensional GeoSpatial
  • DataMaps, Virginia Tech

30
Exercise
  • Demographics data
  • Multi-Dimensional attributes(multiple measures
    over time)
  • Geospatial map
  • Static visual representation, no
    interaction(must visually relate all attributes
    to geospatial)
  • Design choices?

31
1. Small Multiples
Multiple views 1 attribute / map
1976
32
2. Embedded Visualizations
Complex glyphs For each location, show vis of
all attributes
33
Multi-DimensionalFunctions
  • cs5764 Information Visualization
  • Chris North

34
Multi-Dimensional Functions
  • y f(x1, x2, x3, , xn)
  • Continuous
  • E.g. y x13 2x22 - 9x3
  • Discrete
  • xi are uniformly sampled in a bounded region
  • E.g. xi 0,1,2,,100
  • E.g. measured density in a 3D material under
    range of pressures and room temperatures.

35
Relations vs. Functions
  • Relations
  • R(A, B, C, D, E, F)
  • All dependent variables (1 ind.var.?)
  • Sparse points in multi-d dep.var. space
  • Functions
  • R(A, B, C, D, E, F, Y) Yf(A, B, C, D, E, F)
  • Many independent variables
  • Defined at every point in multi-d ind.var. space
    (onto)
  • Huge scale 6D with 10 samples/D 1,000,000
    data points

36
Multi-D Relation Visualizations
  • Dont work well for multi-D functions
  • Example
  • Parallel coords
  • 5D func sampled on 1-9 for all ind.vars.

37
  • Typically want to encode ind.vars. as spatial
    attrs

38
1-D Easy
  • b f(a)
  • a ? x
  • b ? y

b
a
39
2-D Easy
  • c f(a, b)
  • Height field
  • a ? x
  • b ? y
  • c ? z

c
b
a
40
2-D Easy
  • c f(a, b)
  • Heat map
  • a ? x
  • b ? y
  • c ? color

b
a
c
41
3-D Hard
  • d f(a, b, c)
  • Color volume
  • a ? x
  • b ? y
  • c ? z
  • d ? color
  • Whats inside?

c
b
a
42
?4D Really Hard
  • y f(x1, x2, x3, x4, , xn)
  • What does a 5D space look like?
  • Approaches
  • Hierarchical axes (Mihalisin)
  • Nested coordinate frames (Worlds within Worlds)
  • Slicing (HyperSlice)
  • Radial FocusContext (PolarEyez, Sanjini)

43
Hierarchical Axes
  • 1D view of 3D function
    (Mihalisin et al.)

f(x1, x2, x3)
x3
x2
x1
44
as in TableLens
5D 9 samp/D
45
(No Transcript)
46
Hierarchical Axes
  • 2D view of 4D function (using heat maps)
  • y f(x1, x2, x3, x4)
  • Discrete xi 0,1,2,3,4

x3
x1
x2
y f(x1,x2,0,0) as color
x4
47
Hierarchical Axes
  • Scale?
  • 6d 3 levels in the 2d approach
  • 10 samples/d 1,000,000 data points 1 screen
  • For more dimensions
  • zoom in on blocks
  • reorder dimensions

48
  • 5D9 sample/D

49
Nested Coordinate Frames
  • Feiner, Worlds within Worlds

50
Slicing
  • Van Wijk, HyperSlice

51
Radial FocusContext
  • Jayaraman, PolarEyez
  • infovis.cs.vt.edu

x3
x4
x2
x1
x5
-x5
-x1
-x2
-x4
52
Comparison
  • Hierarchical axes (Mihalisin)
  • Nested coordinate frames (Worlds in Worlds)
  • Slicing (HyperSlice)
  • Radial FocusContext (PolarEyez)

53
Comparison
  • Hierarchical axes (Mihalisin)
  • lt 6d by 10 samples, ALL slices, view 2d at a time
  • Nested coordinate frames (Worlds in Worlds)
  • lt 5-8d, continuous, no overview, 3d hardware
  • Slicing (HyperSlice)
  • lt 10d by 100 samples, 2d slices
  • Radial FocusContext (PolarEyez)
  • lt 10d by 1000 samples, overview, all D uniform,
    rays

54
Dynamic Queries
  • cs5764 Information Visualization
  • Chris North

55
HomeFinder
56
Spotfire
57
Limitations
  • Scale
  • Scatterplot screen space 10,000 1,000,000
  • Data structures algorithms lt 50,000
  • Poor screen drawing on Filter-out
  • A Solution Query Previews!
  • AND queries only
  • Arbitrary boolean queries?
  • A solution Filter Flow

58
DQ Algorithm
  • Idea incremental algorithm
  • only deal with data items that changed state
  • When slider moves
  • Calculate slider delta
  • Search in data structure for data items in the
    delta region
  • If slider moved inward (filter out)
  • Erase data items from visualization
  • Else slider moved outward (filter in)
  • Draw data items on visualization

Problem! Overlapped items, erases items
underneath too
59
DQ Data Structures (1)
  • Sorted array of the data for each slider
  • Need counter for each data item sliders that
    filter it
  • Attribute Explorer visualizes these counters too!
  • O(delta)

Year
Delta
60
DQ Data Structures (2)
  • Multi-dimensional data structure
  • E.g. K-d tree, quad-tree,
  • Recursively split space, store in tree structure
  • Enables fast range search, O()

61
DQ Data Structures (2)
  • Multi-dimensional data structure
  • E.g. K-d tree, quad-tree,
  • Recursively split space, store in tree structure
  • Enables fast range search, O(logn)

Delta
62
Erasure Problem
  • Each pixel has counter number of items
  • Can visualize this for density!
  • Z-buffer?
  • Redraw local area only

63
Filter-Flow
Betty Catherine Edna Freda Grace Hilda Judy Marcus
Tom
64
Influence/Attribute Explorer
  • Tweedie, Spence, Externalizing Abstract
    Mathematical Models (Influence/Attribute
    Explorer)



65
Query Previews
  • Doan, Query Previews




Write a Comment
User Comments (0)
About PowerShow.com