Title: Electrochemistry and the Nernst Equation
1Electrochemistry and the Nernst Equation
214 Electrochemistry and the Nernst Equation
- Goals
- To determine reduction potentials of metals
- To measure the effect of concentration on
reduction potential - To prepare a Nernst plot to find solubility of
silver halides (AgX) - Method
- Use an electrochemical cell and voltmeter
3Redox Chemistry/Electrochemistry
- Thermodynamics of redox reactions
- Chemical / electrical work interchange
- Involves transfer of electrons or electron
density - Oxidation
- Loss of electrons
- Reduction
- Gain of electrons
4(No Transcript)
5Redox reactions and spontaneity
- Spontaneity is determined by thermodynamics
- Ex. Cu/Cu2 // Zn/Zn2 system
- What will be oxidized (lose e-)? Cu or Zn
- What will be reduced (gain e-)? Cu2 or Zn2
- Will e- flow from Zn to Cu2 or from Cu to Zn2?
- What will the energy change be?
- Current
- Flow of e-
- Systems attempt to attain equilibrium
- (minimum energy state)
6Zn (s) Cu2(aq) ? Cu (s) Zn2(aq)
2e-
7Electrochemistry/Electrochemical Cells
- Redox reaction produces or uses electrical energy
- Voltaic (galvanic) cell
- spontaneous reaction generates electrical energy
(battery) - Electrolytic cell
- absorbs energy from an electrical source to
drive nonspontaneous reaction (recharge)
8Cell Components
- Electrodes
- conduct electricity between cell and surroundings
- Anode oxidation site AO, an ox
- Cathode reduction site CR, red cat
- Electrolyte
- ion mixture involved in reaction or carrying
charge - Salt bridge
- completes circuit (provides charge balance)
9Experimental Set-up
- Electrochemical cell
- Separated ½ reactions
- (ox and red)
- Driving force for
- electron transfer is
- measurable
- What is 1.10?
10Electrochemical Cell Set-up
voltmeter
Mred(s)
Mox(s)
Salt Bridge (KNO3)
My
Mx
Oxidizing agent
Reducing agent
Cathode Ions are reduced My(aq) y e- ? M(s)
Anode Electrode is oxidized M(s) ? Mx(aq) x e-
11Example Set-up
1.10V
Cu(s)
Zn(s)
Salt Bridge (KNO3)
Cu2
Zn2
Oxidizing agent
Reducing agent
Cathode Ions are reduced Cu2(aq) 2e- ? Cu(s)
Anode Electrode is oxidized Zn(s) ? Zn2(aq) 2e-
12Zn (s) Cu2(aq) ? Cu (s) Zn2(aq)
- Zn gives up e- to Cu spontaneously
- Zn pushes harder on e-
- e- on Zn greater potential energy
- greater electrical potential
- 1.10 V is a measure of this
13Electrochemical potential measured voltage
- Voltage
- difference in energy of the e- on the metals or
- relative difference in metals abilities to give
e- - different metals ? different e- energy
- ? different push on e-
- Electromotive force (EMF cell potential), Ecell
- Driving force on electrons
- Measured voltage potential difference
- Higher Ecell larger drive
14Thermoelectric bridge work and e- flow
- DG0 free energy change (available work)
- E0 standard cell potential
- n number of moles of e- transferred
- F Faradays constant
15Energy, E0, and Spontaneity
- Cell potential Free Energy
Spontaneity - Positive E0cell DG0 lt 0 Spontaneous
- Negative E0cell DG0 gt 0 Not
- Zero E0cell DG0 0 Equilibrium
- DG0 free energy of change
- amount of available (electrical) work
16Standard Reduction Potentials, E0
- E0cell cell potential under standard conditions
- (reference tables)
- elements in standard states s, l, g
- solutions 1 M
- gases 1 atm
- Relative to standard hydrogen electrode, SHE
- 2H(aq) 2 e- ? H2(g) E0cell 0.00 V
- Overall E0cell combine E0s for half-reactions
17Example E0 values
- Reduction reaction E0
- Mg2 2e- ? Mg -2.30 V
- Zn2 2e- ? Zn -0.76 V
- Ni2 2e- ? Ni -0.23 V
- 2H2 2e- ? H2 0.00 V
- Cu2 2e-? ? Cu 0.34 V
- Ag e-? ? Ag 0.80 V
- Au3 3e-? ? Au 1.50 V
- ? More positive E0 greater reduction
potential - ?The push on e- relative to H2/2H
18E0 values
- More positive
- Stronger oxidizing agent
- Easier to reduce
- More readily accepts e-
- More negative
- Stronger reducing agent
- More easily oxidized
- More readily gives e-
- In a spontaneous reaction
- Stronger R.A. O.A. ? Weaker R.A. O.A.
19Calculating E0cell
- Reaction Zn (s) Cu2(aq) ? Cu (s)
Zn2(aq) - red. Zn(s) ? Zn2(aq) 2 e- E0 0.76 V
- ox. Cu2(aq) 2 e- ? Cu(s) E0 0.34 V
- Zn (s) Cu2(aq)? Cu(s) Zn2(aq) E0 1.10 V
- Assumes 1 M Cu2 and Zn2 solutions under
standard conditions
20Connection to work DG0, E0, and K
From thermodynamics
From electrochemistry
So
So
At equilibrium DG0 0 and Keq Q
n moles of e- transferred
21Nernst Equation
Nonstandard conditions
So
Q, reaction quotient
Cell potential298K
22Summary of Key Equations
Standard Conditions and at Equilibrium
Non-standard conditions298K
- Remember Ecell is proportional to ?DG
23Concentration Dependence
- Electrical potentials depend on
- type of metal
- solution concentration
- For Zn (s) Cu2(aq) ? Cu (s) Zn2(aq)
24Example
- Gold will plate onto silver (not vice versa)
why?
Au3(aq)
Ag(aq)
Ag(aq)
e-
Au(s)
Au(s)
Ag(s)
3Ag Au3 ? 3Ag Au
No reaction
25Example Au plating on Ag
Spontaneous reaction 3Ag Au3 ? 3Ag Au
Given (tables) Ag3 e- ? Ag E0 0.80
V Au3 3e- ? ? Au E0 1.50 V
If Au3 Ag 1 M at 298K
26Example Au plating on Ag
Spontaneous reaction 3Ag Au3 ? 3Ag Au
If E0 0.70 V Au3 Ag 0.1
M at 298K
27Example Au plating on Ag
Spontaneous reaction 3Ag Au3 ? 3Ag Au
If ½ Au3 is consumed Au3 ½ (0.10M)
0.05M Ag 0.10M3(0.05M) 0.25 M
28Experimental Parts and Key Ecell Equation
Part 1
Parts 2 and 3
29Experimental Overview
- 1. Dependence of potential on metal type
- Metal1 ? Metal2
- c1 c2
- Use 0.1 M solutions and electrodes of different
metals - Measure Ecell for each ( E0cell)
- Compare experimental vs. literature values
0
30Overview
- 2. Dependence of potential on concentration
-
- Metal1 Metal2
- c1 ? c2
- Use 0.1 M solution with 1?10-5 to 1?10-1 M
solutions - Measure Ecell for each
- Plot Ecell vs. log(cdil/cconc)
- Compare slope to Nernst equation
0
31Overview
- 3. Ksp Determination
- AgX(s) Ag(aq) X-(aq) Ksp AgX-
- Met1 Met2
- c1 ? c2
- Use 0.1 M Ag with satd AgX (0.1M Ag 0.2M KX)
- Measure Ecell
- Part 2 plot gives
- So
32Part 1 Notes Ecell Dependence on type of metal
- Measure Ecell for metal pairs
- 0.1 M Solutions (eliminates conc. dependence)
- TA will demonstrate cell set-up
- Each cell vial 2/3 full of solution
- liquids MUST be at equal levels
- Salt bridge filter paper soaked in 1.0 M KNO3
- dont let tweezers touch solutions in vials
- Voltmeter Clip leads to metal strips
(electrodes) - Insert into solutions
33Part 1 Notes Ecell Dependence on type of metal
- Measure cell voltage, Ecell
- Measure 2 or 3 metal relative to Cu
- Measure 2 or 3 metals relative to each other
- Calculate E0cell values
- Compare to literature
0
34Electrochemical Cell Set-up
0.47
Cu(s)
Pb(s)
Salt Bridge (KNO3)
Cu2
Pb2
Cathode
Anode
Spontaneous when Pb is oxidized and Cu2 is
reduced
35Part 1 Examples
- Copper and Lead
- Pb ? Pb2 ?? Cu2 ? Cu
- oxidation Pb metal/solution
- reduction Cu metal/solution
- Reduction potentials (table)
- Pb2(aq) 2 e- ? Pb(s) E0 0.13 V
- Cu2(aq) 2 e- ? Cu(s) E0 0.34 V
- For spontaneous reaction, E0 gt 0 so calculated E0
is - Pb (s) Cu2(aq)? Cu(s) Pb2(aq) E0 0.47 V
36Example Part 1 Data
- Measured vs.
- Calculated Ecell
- Ecell
- Ecathode (? Eanode)
37Part 2 Notes Ecell dependence on concentration
- Cells same metal/metal ion solution
- TA will demonstrate cell set-up
- Measure Ecell (E0 0)
- Concentrations 0.1 to 1?10-5 vs. 0.1 M
- Plot Ecell vs. log(cdil/cconc)
- Compare slope to Nernst equation (-2.303RT/nF)
- Ag(s) Ag(aq, conc) ? Ag(s) Ag(aq, dil)
38Example Part 2 Data
- Plot Ecell msd vs. log(A/B)
Theoretical Slope ?2.303RT/nF
39Part 3 Notes Silver Halides Ksp
- cell 1 0.1 M Ag?Ag electrode
- cell 2 saturated AgX solution (KCl/AgNO3)
- Measure Ecell
- Determine Agdilute
- Find Ksp AgX-
- X- unchanged
- Ag Ecell /Part 2
- Find DG0 -RTlnKsp
0.2M
40Electrochemical Ksp and DG0 Determination
- Experimental voltages good lt5 error
- Experimental Ksp good high 20 error
41Report
- Abstract
- Sample calculations including
- Reduction potentials for metals
- E0cell for cells without Cu
- log (Agdilute/Agconc)
- Agdilute, Ksp, DG0
- Results
- Ecell, msrd for all cells
- Reduction potentials for metals
- E0cell for metals
- concentrations, Emeasured, slopes, graph
- Ecell, msrd, Agdilute, Ksp, DG0
- Discussion/review questions