Manifold Harmonics: Laplacian Eigenfunctions for Computer Graphics - PowerPoint PPT Presentation

About This Presentation
Title:

Manifold Harmonics: Laplacian Eigenfunctions for Computer Graphics

Description:

Manifold Harmonics: Laplacian Eigenfunctions for Computer Graphics – PowerPoint PPT presentation

Number of Views:275
Avg rating:3.0/5.0
Slides: 35
Provided by: Bru66
Category:

less

Transcript and Presenter's Notes

Title: Manifold Harmonics: Laplacian Eigenfunctions for Computer Graphics


1
Manifold Harmonics Laplacian
Eigenfunctionsfor Computer Graphics
Bruno Lévy INRIA, project ALICE
2
Overview
  • 1. Motivations Inspiration
  • 2. The Discrete Setting
  • 3. The Continuous Setting
  • 4. Applications - Demos

3
1. Motivations
Generate a "coordinate system"
LSCM in Maya
4
1. MotivationsParameterization and Gridding
Constrained Parameterization Siggraph 1998 and
2001
5
1. MotivationsArbitrary Topology Need for new
methods
Create a  geographic coordinate system 
6
1. MotivationsGlobal Parameterizations
Gu Yau Global Conformal Param.
7
1. Motivations - InspirationGlobal
Parameterizations
Dong et.al 2006 - Laplacian eigenfunction
8
1. Motivations - Inspiration
  • Signatures Reuter et. al Shape DNA
  • Segmentation Liu Zhang
  • Shape Correspondence Liu Zhang
  • Shape Compression Karni Gotsmann

9
2. The Discrete SettingGraph Laplacian
ai,j wi,j gt 0 if (i,j) is an edge ai,i -S
ai,j
(1,1 1) is an eigenvector assoc. with 0
The second eigenvector is interresting Fiedler
73, 75
10
2. The Discrete SettingFiedler Vector
FEM matrix, Non-zero entries
Reorder with Fiedler vector
11
2. The Discrete SettingFiedler Vector
Streaming meshes Isenburg Lindstrom
12
2. The Discrete Setting Fiedler Vector
(geometrical interp.)
F(u) S wij (ui - uj)2
S ui 0
subject to
½ S ui2 1
L(u) ½ ut A u - l1 ut 1 - l2 ½ (utu - 1)
u eigenvector of A l1 0 l2 eigenvalue
13
2. The Discrete Setting what about the other
eigenvectors ?
  • ACE
  • Local Linear Embedding
  • Multi-Dimentional Scaling
  • Manifold Learning
  • Dimension Reduction
  • Laplacian Eigenmaps
  • Diffusion Wavelets
  • ...

14
3. The Continuous SettingChladni Plates
sand
15
3. The Continuous SettingChladni Plates
Do re mi fa sol la si do
16
3. The Continuous SettingChladni Plates
Helmoltz wave eqn ?2 f l f
Discoveries concerning the theory of music
Chladni, 1787
17
3. The Continuous SettingFunctional Analysis
u v S ui vi
ltf,ggt ? f(t)g(t)dt
18
3. The Continuous SettingFunctional Analysis
Operator L
Lf
f
eigenfunction
19
3. The Continuous SettingFEM formulation
  • Operator equation Lf lf
  • L ? ?2./?x2 ?2./?y2
  • Function basis (fi) f S ai fi
  • Inner Product ltf,ggt ? f(x) g(x) dx
  • ?i, ltLf, figt lltf, figt

20
3. The Continuous SettingFEM Formulation
  • Test function space (fi) f S ai fi
    (P1,P2,P3)
  • ?i, ltDf, figt lltf, figt
  • ltDf,ggt -lt?f,?ggt ( boundary term)
  • Ax lBx
  • aij -lt?fi,?fjgt bij ltfi,fjgt
  • Note Lumped mass B diag( Sj bij )
  • A B-1 A "discrete laplacian" used by
  • geometry processing people.

21
3. The Continuous SettingThe FEM Laplacian
G. Allaire Polytechnique course notes.
i
b
a
j
aij 2 (cotan a cotan b) / (Ai Aj)
22
3. The Continuous SettingWhy this is important ?
FEM mesh Laplacian
Combinatorial mesh Laplacian
23
3. The Continuous SettingNumerical Chladni Plate
Discrete Cosine Transform - JPEG
24
3. The Continuous SettingSpherical Chladni
Spherical Harmonics
25
3. The Continuous SettingMore complex objects
2D square Discrete Cosine
Transform Sphere Spherical
Harmonics Arbitrary shapes
An algorithm that "understands" geometry SMI 06
26
3. The Continuous SettingWhy does it turn around
protrusions ?
Hindsight from the 1D circular case
  • Equivalent to 0,2p with periodic conditions
    f(0) f(2p)
  • ?f ?2f/?x2
  • ?2 sin(wx)/?x2 -w2 sin(wx) (resp. cos)
  • w needs to be an integer (periodic condition)

2p
0
27
3. The Continuous SettingMore geometric
properties
Nodal sets are sets of curves intersecting at
constant angles
The N-th eigenfunction has at most N eigendomains
28
3. The Continuous SettingMore geometric
properties
29
3. The Continuous SettingNumerical Method
1 million vertices, 1000 eigenfunctions ARPACK
TAUCS shift-invert
30
3. The Continuous Setting Boundary Conditions
Neumann
Dirichlet
31
3. The Continuous SettingHigher order function
basis
P1 function basis
P3 function basis
32
4. Fourier Transformfor Meshes
Demo Interactive Convolution Filtering
33
4. Finding the "Natural Parameters"
Demo "Manifold Harmonic Faces" Find the right
"tuning knobs" for a shape
34
Conclusions
  • An exciting research avenue
  • Fourier Transform for Arbitrary Shapes
  • Parameterize the function space on the shape
    rather than the shape
  • Fast MHT (Fourier Transform) ?
  • Diffusion wavelets Maggioni,
  • Manifold Quasi-Harmonics

35
Aknowledgements
  • AIM_at_Shape, Microsoft, INRIA GEOREP
  • Naoki Saito
  • Matthias Zwicker (MIT), Ramsey Dyer (SFU)
  • Michela Spanuolo (IMATI), Rhaleb Zayer (MPII)
  • ALICE Researchers and Students

Bruno Vallet
Wan-Chiu Li
Nicolas Ray
36
Anouncements ICIAM
minisymposium Geo-Topo methods for 3D shape
classification and matching Friday, 1115 -
1315 Room CHN-G-42 SIGGRAPH courses Mesh
parameterization Geometric Modeling Special
issue Computing computing-SI_at_eg.imati.cnr.it
ACM SPM (Symposium on Physical Modeling) IEEE
SMI (Shape Modeling International) June, 4-8,
Stony Brooks, USA http//www.cs.sunysb.edu/spm08
Abstracts Nov, 27 Full papers Dec,
4 Notification Jan, 31 links http//www.loria.f
r/levy
Write a Comment
User Comments (0)
About PowerShow.com