Title: Two-link Planar Arm
1Two-link Planar Arm
2Two-link Planar Arm
3Joint Space Dynamic Model
Viscous friction torques
Actuation torques
Coulomb friction torques
Force and moment exerted on the environment
Coriolis/ centripetal torque
Multi-input-multi-output Strong coupling
Nonlinearity
4Direct Dynamics and Inverse Dynamics
- Direct dynamics
- Given joint torques and initial joint position
and velocity, determine joint acceleration - Useful for simulation
- Inverse dynamics
- Given joint position, velocity and acceleration,
determine joint torques - Useful for trajectory planning and control
algorithm implementation
5Two-link Planar Arm Inverse Dynamics (Example
4.2)
Matlab Toolbox
6Two-link Planar Arm Inverse Dynamics (Example
4.2)
7Two-link Planar Arm Direct Dynamics (Example 4.2)
- Robot toolbox
- Case 1 no actuating torques
- Case 2 actuating only the first joint
- Case 3 simulate puma560 by yourself
8Matlab Toolbox
- Useful functions
- Accel (pp 20) Compute manipulator forward
dynamics - Coriolis(pp 22) Compute the manipulator
Coriolis/centripetal torque components - Gravload(pp 33)Compute the manipulator gravity
torque components - Itorque(pp40) Compute the manipulator inertia
torque component - Rne(57) Compute inverse dynamics via recursive
Newton-Euler formulation - Simulink library
- Roblocks.mdl
9Two-link Planar Arm Dynamic Model
L1 link( 0 1 0 0 0, 'standard') D-H
param L2 link( 0 1 0 0 0,
'standard') L1.m 50 link mass L2.m
50 L1.r -0.5 0 0 center of mass
referred to the link frame L2.r -0.5 0
0 L1.I 0 0 10 0 0 0 inertia
tensor L2.I 0 0 10 0 0 0 L1.Jm
0.01 inertia of motor L2.Jm 0.01 L1.G
100 gear reduction ratio L2.G 100 global
mytl mytl robot(L) mytl.gravity0 9.81 0
10Joint Space Dynamic Model
Viscous friction torques
Actuation torques
Coulomb friction torques
Force and moment exerted on the environment
Coriolis/ centripetal torque
Multi-input-multi-output Strong coupling
Nonlinearity