GAS LIFT - PowerPoint PPT Presentation

About This Presentation
Title:

GAS LIFT

Description:

Artificial Lift Methods * GAS LIFT SUCKER ROD PUMP ELECTRIC SUBMERSIBLE PUMP OTHERS Penentuan Tekanan Injeksi Katup Terbuka/Tertutup Gas Lift - Design * Apabila R ... – PowerPoint PPT presentation

Number of Views:703
Avg rating:3.0/5.0
Slides: 86
Provided by: word1000
Category:
Tags: gas | lift

less

Transcript and Presenter's Notes

Title: GAS LIFT


1
Artificial Lift Methods
  • GAS LIFT
  • SUCKER ROD PUMP
  • ELECTRIC SUBMERSIBLE PUMP
  • OTHERS

2
PENDAHULUAN (1)
PwfltPsepdPfdPt
Flowing Well
No - Flow Well
PwfPsepdPfdPt
3
PENDAHULUAN (2)
  • Untuk mengangkat fluida sumur
  • Menurunkan gradien aliran dalam tubing
  • Memberikan energy tambahan di dalam sumur untuk
    mendorong fluida sumur ke permukaan

Gradien ?
No - Flow Well
Energy ?
4
PENDAHULUAN (3)
5
PENDAHULUAN GAS LIFT (1)
  • Persamaan Umum Pressure Loss
  • Pengurangan gradien aliran dengan menurunkan
    densitas fluida

6
PENDAHULUAN GAS LIFT (2)
?
Gradient Elevasi
Gradient Friksi
Densitas Campuran
?
Gradient Akselerasi
7
PENDAHULUAN GAS LIFT (3)
PwfltPsepdPfdPt
PwfgtPsep(dPfdPt)
Berkurang
8
GAS LIFT (1)
  • Gas lift technology increases oil production rate
    by injection of compressed gas into the lower
    section of tubing through the casingtubing
    annulus and an orifice installed in the tubing
    string.
  • Upon entering the tubing, the compressed gas
    affects liquid flow in two ways
  • (a) the energy of expansion propels (pushes) the
    oil to the surface and
  • (b) the gas aerates the oil so that the effective
    density of the fluid is less and, thus, easier to
    get to the surface.

9
SURFACE COMPONENTS
SUB-SURFACE COMPONENTS
RESERVOIR COMPONENTS
10
(No Transcript)
11
Detail Gas Lift Surface Operation
Injected Gas
Res. Fluid Inj. Gas
12
Sistem Sumur Gas Lift
Separator
Flow Line
Gas Injection Line
  • Wellhead Subsystem
  • Production subsystem
  • wellhead
  • production choke
  • pressure gauge
  • Injection subsystem
  • injection choke
  • Separator Subsystem
  • separator
  • manifold
  • pressure gauges
  • flow metering
  • Compressor Subsystem
  • intake system
  • outlet system
  • choke
  • pressure gauge
  • injection rate metering

Unloading Gas Lift Mandrells
Gas Injection Valve
Valve Subsystem
  • Wellbore Subsystem
  • perforation interval
  • tubing shoe
  • packer

13
Compressor Sub-System
14
Wellhead Sub-System
15
Gas Lift Valve Sub-System
16
Gas Lift Valve
Gas Injection
Tubing Pressure
Close condition
Open condition
17
Kriteria Operasi Sumur Gas Lift
  • There are four categories of wells in which a gas
    lift can be considered
  • High productivity index (PI), high bottom-hole
    pressure wells
  • High PI, low bottom-hole pressure wells
  • Low PI, high bottom-hole pressure wells
  • Low PI, low bottom-hole pressure wells
  • Wells having a PI of 0.50 or less are classified
    as low productivity wells.
  • Wells having a PI greater than 0.50 are
    classified as high productivity wells.
  • High bottom-hole pressures will support a fluid
    column equal to 70 of the well depth.
  • Low bottom-hole pressures will support a fluid
    column less than 40 of the well depth.

18
2 Types of Gas Lift Operation
  • Continuous Gas Lift
  • Intermittent Gas Lift
  • A continuous gas lift operation is a steady-state
    flow of the aerated fluid from the bottom (or
    near bottom) of the well to the surface.
  • Continuous gas lift method is used in wells with
    a high PI (05 stbdaypsi) and a
    reasonably high reservoir pressure relative to
    well depth.
  • Intermittent gas lift operation is characterized
    by a start-and-stop flow from the bottom (or near
    bottom) of the well to the surface. This is
    unsteady state flow.
  • Intermittent gas lift method is suitable to wells
    with (1) high PI and low reservoir pressure or
    (2) low PI and low reservoir pressure.

19
Materi Perencanaan Sumur Gas Lift
  • This chapter covers basic system engineering
    design fundamentals for gas lift operations.
  • Relevant topics include the following
  • Liquid flow analysis for evaluation of gas lift
    potential
  • Gas flow analysis for determination of lift gas
    compression requirements
  • Unloading process analysis for spacing subsurface
    valves
  • Valve characteristics analysis for subsurface
    valve selection
  • Installation design for continuous and
    intermittent lift systems.

20
Evaluation of Gas Lift Potential
  • Evaluation of gas lift potential requires system
    analyses to determine well operating points for
    various lift gas availabilities.
  • The principle is based on the fact that there is
    only one pressure at a given point (node) in any
    system no matter, the pressure is estimated
    based on the information from upstream (inflow)
    or downstream (outflow).
  • The node of analysis is usually chosen to be the
    gas injection point inside the tubing, although
    bottom hole is often used as a solution node.

21
Gas Injection Rates
  • Four gas injection rates are significant in the
    operation of gas lift installations
  • Injection rates of gas that result in no liquid
    (oil or water) flow up the tubing. The gas amount
    is insufficient to lift the liquid. If the gas
    enters the tubing at an extremely low rate, it
    will rise to the surface in small semi-spheres
    (bubbly flow).
  • Injection rates of maximum efficiency where a
    minimum volume of gas is required to lift a given
    amount of liquid.
  • Injection rate for maximum liquid flow rate at
    the optimum GLR.
  • Injection rate of no liquid flow because of
    excessive gas injection. This occurs when the
    friction (pipe) produced by the gas prevents
    liquid from entering the tubing

22
CONTINUOUS GAS LIFT
  • THE GAS IS INJECTED CONTINUOUSLY TO ANNULUS

23
Continuous Gas Lift Operation
  • The tubing is filled with reservoir fluid below
    the injection point and with the mixture of
    reservoir fluid and injected gas above the
    injection point. The pressure relationship is
    shown in Fig. 13.4.

24
Gas Lift OperationPressure vs Depth
25
Parameter Design
  • Jumlah gas injeksi yang tersedia
  • Jumlah gas injeksi yang dibutuhkan
  • Tekanan Gas Injeksi yang dibutuhkan di setiap
    sumur
  • Tekanan Kompresor yang dibutuhkan

26
Gas Injeksi yang diperlukan
  • GAS LIFT PERFORMANCE CURVE

27
Availability amount of Gas Injection
  • Unlimited amount of lift
  • gas
  • Limited amount of gas
  • In a field-scale valuation, if an unlimited
    amount of lift gas is available for a given gas
    lift project, the injection rate of gas to
    individual wells should be optimized to maximize
    oil production of each well.
  • If only a limited amount of gas is available for
    the gas lift, the gas should be distributed to
    individual wells based on predicted well lifting
    performance, that is, the wells that will produce
    oil at higher rates at a given amount of lift gas
    are preferably chosen to receive more lift gas.

28
Kebutuhan Gas Injeksi (1)
  • Nodal Analysis
  • IPR Curve
  • Tubing Performance Curve
  • GLR formasi
  • Variasi GLR
  • GLR-total (assume)
  • Qg-inj Qtotal Qq-f
  • Plot Qg-inj vs Qliquid

29
Kebutuhan Gas Injeksi (2)
  • Qg-inj gtgt maka Qliq gtgt
  • Pertambahan Qliq makin kecil dengan makin
    meningkatnya Qg-inj
  • Sampai suatu saat dengan pertambahan Qg-inj, Qliq
    berkurang
  • Titik puncak dimana Qliq maksimum disebut sebagai
    Qoptimum

30
Unlimited Gas Injection Case
  • If an unlimited amount of gas lift gas is
    available for a well, the well should receive a
    lift gas injection rate that yields the optimum
    GLR in the tubing so that the flowing bottom-hole
    pressure is minimized, and thus, oil production
    is maximized.
  • The optimum GLR is liquid flow rate dependent and
    can be found from traditional gradient curves
    such as those generated by Gilbert (Gilbert,
    1954).

31
Unlimited Gas Injection Case
  • After the system analysis is completed with the
    optimum GLRs in the tubing above the injection
    point, the expected liquid production rate (well
    potential) is known.
  • The required injection GLR to the well can be
    calculated by

32
Limited amount of gas injection
  • If a limited amount of gas lift gas is available
    for a well, the well potential should be
    estimated based on GLR expressed as

33
Gas Flow Rate Requirement
  • The total gas flow rate of the compression
    station should be designed on the basis of gas
    lift at peak operating condition for all the
    wells with a safety factor for system leak
    consideration, that is,

where qg total output gas flow rate of the
compression station, scf/day Sf safety factor,
1.05 or higher Nw number of wells
34
Point of Injection
35
Output Gas Pressure Requirement (1)
  • Kickoff of a dead well (non-natural flowing)
    requires much higher compressor output pressures
    than the ultimate goal of steady production
    (either by continuous gas lift or by intermittent
    gas lift operations).Mobil compressor trailers
    are used for the kickoff operations.

36
Output Gas Pressure Requirement (2)
  • The output pressure of the compression station
    should be designed on the basis of the gas
    distribution pressure under normal flow
    conditions, not the kickoff conditions. It can be
    expressed as

37
COMPRESSOR
38
Output Gas Pressure Requirement (3)
  • The injection pressure at valve depth in the
    casing side can be expressed as
  • It is a common practice to use Dpv 100 psi. The
    required size of the orifice can be determined
    using the choke-flow equations presented in
    Subsection 13.4.2.3

39
Tekanan Tubing _at_ Valve Gas Lift
Dp _at_ tubing
Pwf
40
Output Gas Pressure Requirement (4)
  • Accurate determination of the surface injection
    pressure pc,s requires rigorous methods such as
    the Cullender and Smith method (Katz et al.,
    1959).
  • However, because of the large cross-sectional
    area of the annular space, the frictional
    pressure losses are often negligible.
  • Then the average temperature and compressibility
    factor model degenerates to (Economides et al.,
    1994)

41
Up-Stream Choke / Injection Choke
  • The pressure upstream of the injection choke
    depends on flow condition at the choke, that is,
    sonic or subsonic flow.
  • Whether a sonic flow exists depends on a
    downstream-toupstream pressure ratio. If this
    pressure ratio is less than a critical pressure
    ratio, sonic (critical) flow exists.
  • If this pressure ratio is greater than or equal
    to the critical pressure ratio, subsonic
    (subcritical) flow exists. The critical pressure
    ratio through chokes is expressed as

42
Gas Lift Injection Parameters
Compressor Pressure
Pwf
43
Point of Injection
44
Point of Balanced
45
Unloading Valves Design
  • Unloading ProcessGas Lift Wells

46
Persiapan Operasi Sumur Gas Lift
47
TAHAP O
Choke Tutup
  • Katup Unloading sudah dipasang.
  • Sumur masih diisi killing fluid
  • Fluida produksi masih belum mengalir ke dalam
    tubing

48
Tahap I
  • Pada Gambar 1 ditunjukkan penampang sumur yang
    siap dilakukan proses pengosongan (unloading).
    Pada tubing telah dipasang empat katup, yang
    terdiri dari 3 katup, yaitu katup (1), (2) dan
    (3), yang akan berfungsi sebagai katup unloading.
    Sedangkan katup (4) akan berfungsi sebagai katup
    operasi. Sebelum dilakukan injeksi semua katup
    dalam keadaan terbuka.
  • Sumur berisi cairan work-over, ditunjukkan dengan
    warna biru, dan puncak cairan berada diatas katup
    unloading (1).
  • Gas mulai diinjeksikan, maka gas akan menekan
    permukaan cairan work over kebawah, dan penurunan
    permukaan cairan ini akan mencapai katup
    unloading (1). Pada saat ini gas akan mengalir
    dalam tubing melalui katup (1) yang terbuka.

No flow

Permukaan Killing fluid
Valve 1 Terbuka
Valve 2 Terbuka
Valve 3 Terbuka
Valve 4 Terbuka
49
Tahap II
  • Pada Gambar 2 gas injeksi mendorong permukaan
    cairan work-over, dan telah me-lampaui katup
    unloading (1) dan mencapai katup unloading (2).
    Pada saat ini katup unloading (1) tertutup dan
    gas injeksi mendorong permukaan cairan kebawah.
  • Bagian bawah tubing yang semula berisi cairan
    work-over ditempati oleh fluida for-masi.
  • Pada saat ini gas akan masuk kedalam tubing,
    melalui katup unloading (2) yang terbuka. Dengan
    masuknya gas injeksi tersebut kedalam tubing maka
    kolom cairan dalam tubing akan lebih ringan dan
    aliran cairan work over ke permukaan akan
    berlanjut.

Valve 1 Tertutup
Permukaan Killing fluid
Valve 2 Terbuka
Valve 3 Terbuka
Valve 4 Terbuka
Permukaan Fluida Res.
50
Tahap III
  • Pada Gambar 3 gas injeksi mendorong permukaan
    cairan work-over, sampai me-lampaui katup
    unloading (1), (2) dan (3). Setiap saat
    permukaan kolom cairan work-over mencapai katup
    unloading, maka gas injeksi akan mengalir masuk
    kedalam tubing dan aliran cairan work-over dalam
    tubing akan tetap berlangsung. Jika per-mukaan
    kolom cairan work-over mencapai katup unlaoding
    (3), maka katup unloading (2) akan tertutup, dan
    gas injeksi akan masuk melalui katup unloading
    (3).
  • Selama ini pula permukaan cairan formasi akan
    bergerak ke permukaan. Pada saat cairan work-over
    mencapai katup terakhir, yaitu katup operasi (4),
    maka katup unloading (3) akan tertutup dan
    seluruh cairan work-over telah terangkat semua ke
    permukaan, dan hanya katup operasi yang terbuka.

Valve 1 Tertutup
Permukaan Fluida Res.
Valve 2 Tertutup
Valve 3 Tertutup
Valve 4 Terbuka
Permukaan Killing fluid
51
TAHAP IV
  • Pada Gambar 4 ditunjukkan bahwa semua cairan
    work-over telah terangkat dan sumur berproduksi
    secara sembur buatan.
  • Katup operasi (4) akan tetap terbuka, sebagai
    jalan masuk gas injeksi kedalam tubing. Katup ini
    diharapkan dapat bekerja dalam waktu yang lama.
    Dimasa mendatang akan terjadi perubahan
    perbandingan gas-cairan dari formasi, yang
    cenderung menurun serta peningkatan produksi air,
    maka jumlah gas injeksi dapat ditingkatkan dan
    diharapkan katup injeksi dapat menampung
    peningkatan laju injeksi gas tersebut. Dengan
    demikian pemilihan ukuran katup injeksi perlu
    direncanakan dengan baik.

Fluida Produksi
Valve 1 Tertutup
Valve 2 Tertutup
Valve 3 Tertutup
Valve 4 Terbuka
52
(No Transcript)
53
Unloading Valves Design
  • gas lift Valve
  • gas lift Valve Mechanics

54
Gas Lift Valve
55
Gas Lift Valve
56
Contoh Penampang Sumur Gas Lift

Gas Lift Mandrell Gas Lift Valves
  • Gas Lift Valves
  • Mandrell Dummy Valves
  • Mandrell Valves
  • Valves Operating Conditions
  • Casing pressure
  • Test Rack Opening Pressure
  • Port Size
  • Temperature _at_ Lab.
  • Jenis Valves

57
Gas Lift Valve
58
Penampang Gas Lift Valve
59
Jenis Gas Lift Valves
60
Gas Lift Valve
Gas Injection
Tubing Pressure
Close condition
Open condition
61
Valve Mechanics
  • Mekanika valve
  • Closing opening pressure

62
Mekanika Valve (MembukaMenutup)
  • Dome berisi gas Nitrogen yang mempunyai tekanan
    tertentu.
  • Gas Nitrogen ini menekan bagian dasar dome, Pd,
    pada luas penampang bellow, Ab
  • Port terbuka untuk dilalui gas masuk kedalam
    tubing, jika ujung stem tidak menempel pada port.
  • Jika gaya membuka sedikit lebih besar dari gaya
    menutup.

63
Posisi Valve Tertutup
  • Perkalian antara tekanan dalam dome, Pd, dengan
    luas penampang bellow, Ab, menghasilkan gaya
    kebawah yang mendorong stem dan ujung stem
    kebawah, sehingga menutup port. Gaya ini disebut
    sebagai gaya menutup.
  • Gaya menutup Fc Pd Ab

64
Posisi Valve Terbuka
  • Gaya membuka ini berasal dari tekanan gas injeksi
    dari anulus, Pc yang menekan bellow ke atas, pada
    luas penampang efektif sebesar (Ab-Ap) serta
    tekanan fluida dari tubing, Pt (melalui port)
    yang menekan ujung stem keatas.
  • Gaya membuka
  • Pc (Ab - Ap) Pt Ap

65
Keseimbangan Gaya Membuka dan Menutup
  • Dalam keadaan seimbang, yaitu sesaat katup akan
    membuka, gaya membuka sama dengan gaya menutup,
    hal ini dapat dinyatakan sebagai berikut
  • Untuk tekanan tubing, Pt tertentu, gas akan
    mengalir kedalam katup apabila
  • Jika persamaan (2) dibagi dengan Ab, maka
    diperoleh persamaan berikut

66
Penentuan Tekanan Injeksi Katup Terbuka/Tertutup
  • Apabila R Ap/Ab, maka
  • Harga tekanan injeksi, Pc, dapat ditentukan
    dengan persamaan berikut
  • Persamaan diatas dapat digunakan untuk menentukan
    tekanan gas injeksi yang dibutuhkan untuk membuka
    katup dibawah kondisi operasi.

67
Contoh Soal
  • Katup sembur buatan ditempatkan di kedalaman
    6000 ft.
  • Tekanan dome dan tekanan tubing di kedalaman
    tersebut masing-masing sebesar 700 psi dan 500
    psi. Apabila Ab katup sebesar 1.0 in2 dan Ap
    0.1 in2, tentukan tekanan gas di annulus yang
    diperlukan untuk membuka katup.
  • Perhitungan
  • R Ap/Ab 0.1/1.0 0.1
  • Pd 700 psi
  • Pt 500 psi
  • Dengan menggunakan persamaan (5), tekanan gas
    injeksi yang diperlukan untuk membuka katup
    sebesar
  • Pc (700 - 500(0.1) / (1.0-0.1) 722 psi

68
Penentuan Tekanan Dome
Pd ?
Pada Temperature Di kedalaman Valve
Test Rack Opening Pressure
Diubah menjadi Tekanan pada Temperatur Bengkel
69
DOME PADA GAS LIFT VALVE
  • Dome pada Gas Lift Valve, diisi gas Nitrogen
    sejumlah mole tertentu, sehingga dapat memberikan
    tekanan tutup valve yang sesuai.
  • Sesuai dengan
  • P VZ n R T

70
Penentuan Tekanan Dome
  • Tekanan dome _at_ TD Pd
  • Tekanan casing _at_ D Pc
  • Test Rack (di Bengkel)
  • Tekanan dome _at_ TD
  • convert
  • Tekanan dome _at_ 60 oF
  • (Tabel 5-3)
  • Tekanan buka valve, pvo

Gradien Aliran _at_ tubing
_at_TD
Gradien gas injeksi
Tabel 5-3
71
Temperatur pada Valve
T-surface
Gradient Temperatur Aliran
Gradient Geothermal (oF/ft)
Retreivable valve
Non-Retreivable valve
T-bottom
72
Penentuan Opening/ClosingPressure di Bengkel
73
Penentuan Test Rack Opening Pressure
P1 Pc P2 0
74
Ptro (1)
  • Keseimbangan Gaya Buka dan Gaya Tutup, pada Pt
    Patm
  • Dimana Pvc tekanan tutup di bengkel
  • Jika R Ap/Ab, maka
  • Maka P-dome di bengkel

75
Ptro (2)
  • Gaya Buka hanya dipengaruhi oleh Pvc, yaitu
  • Pd di set pada temperatur bengkel (60oF)
  • Perlu dilakukan koreksi terhadap temperatur pada
    kedalaman valve

76
Faktor Koreksi Tekanan Gas Nitrogen Dalam Dome
(pada Temperatur Bengkel 60 oF)
PV ZnRT _at_ Tv PV ZnRT _at_ 60 oF
77
Perhitungan Tekanan _at_ Bellow secara Analitis
  • P(x) tekanan rata-rata yang bekerja
  • pada bellow
  • Pvi P(x) yang diperlukan untuk
  • membuka katup
  • z pergerakan stem dari posisi tertutup
  • k cp/cv
  • Ab luas permukaan bellow
  • Pdi tekanan dome awal
  • Pd(x)tekanan dome jika stem bergerak
  • sejauh x

78
Penentuan Ukuran Port Valve
  • Q laju alir gas, MCF/d
  • Cd discharge coefficient
  • Ap luas penampang port
  • Pu tekanan injeksi gas dalam
  • annulus, psia
  • k cp/cv
  • R perbandingan antara
  • tekanan upstream dengan
  • downstream
  • T temperatur aliran
  • gg specific gravity gas

Laju Alir pada kondisi kritik
Atau dengan menggunakan Grafik, yang dibuat pada
kondisi
Specific Gravity gas 0.65 Temperatur alir 60
oF Tekanan dasar 14.65 psia k cp/cv
1.27 Discharge coeficient 0.865
79
Penentuan Ukuran Port R
  • Berdasarkan rate injeksi (di permukaan Mscf/d),
    qgi, sc tentukan rate injeksi _at_ TD
  • Berdasarkan Pt dan Pc, gunakan Gambar 5-22, untuk
    menentukan ukuran Port
  • Pt downstream press
  • Pc upstream press

80
Unloading Valve Design
  • Penempatan valve unloading
  • Valve spacing

81
  • Various methods are being used in the industry
    for designing depths of valves of different
    types. They are the universal design method, the
    API-recommended method, the fallback method, and
    the percent load method.
  • However, the basic objective should be the same
  • 1. To be able to open unloading valves with
    kickoff and injection operating pressures
  • 2. To ensure single-point injection during
    unloading and normal operating conditions
  • 3. To inject gas as deep as possible

82
  • No matter which method is used, the following
    principles apply
  • The design tubing pressure at valve depth is
    between gas injection pressure (loaded condition)
    and the minimum tubing pressure (fully unloaded
    condition).
  • Depth of the first valve is designed on the basis
    of kickoff pressure from a special compressor for
    well kickoff operations.
  • Depths of other valves are designed on the basis
    of injection operating pressure.
  • Kickoff casing pressure margin, injection
    operating casing pressure margin, and tubing
    transfer pressure margin are used to consider the
    following effects
  • Pressure drop across the valve
  • Tubing pressure effect of the upper valve
  • Nonlinearity of the tubing flow gradient curve.

83
Test II Kamis, 26 Februari 2009
84
(No Transcript)
85
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com