Title: GAS LIFT
1Artificial Lift Methods
- GAS LIFT
- SUCKER ROD PUMP
- ELECTRIC SUBMERSIBLE PUMP
- OTHERS
2PENDAHULUAN (1)
PwfltPsepdPfdPt
Flowing Well
No - Flow Well
PwfPsepdPfdPt
3PENDAHULUAN (2)
- Untuk mengangkat fluida sumur
- Menurunkan gradien aliran dalam tubing
- Memberikan energy tambahan di dalam sumur untuk
mendorong fluida sumur ke permukaan
Gradien ?
No - Flow Well
Energy ?
4PENDAHULUAN (3)
5PENDAHULUAN GAS LIFT (1)
- Persamaan Umum Pressure Loss
- Pengurangan gradien aliran dengan menurunkan
densitas fluida
6PENDAHULUAN GAS LIFT (2)
?
Gradient Elevasi
Gradient Friksi
Densitas Campuran
?
Gradient Akselerasi
7PENDAHULUAN GAS LIFT (3)
PwfltPsepdPfdPt
PwfgtPsep(dPfdPt)
Berkurang
8GAS LIFT (1)
- Gas lift technology increases oil production rate
by injection of compressed gas into the lower
section of tubing through the casingtubing
annulus and an orifice installed in the tubing
string. - Upon entering the tubing, the compressed gas
affects liquid flow in two ways - (a) the energy of expansion propels (pushes) the
oil to the surface and - (b) the gas aerates the oil so that the effective
density of the fluid is less and, thus, easier to
get to the surface.
9SURFACE COMPONENTS
SUB-SURFACE COMPONENTS
RESERVOIR COMPONENTS
10(No Transcript)
11Detail Gas Lift Surface Operation
Injected Gas
Res. Fluid Inj. Gas
12Sistem Sumur Gas Lift
Separator
Flow Line
Gas Injection Line
- Wellhead Subsystem
- Production subsystem
- wellhead
- production choke
- pressure gauge
- Injection subsystem
- injection choke
- Separator Subsystem
- separator
- manifold
- pressure gauges
- flow metering
- Compressor Subsystem
- intake system
- outlet system
- choke
- pressure gauge
- injection rate metering
Unloading Gas Lift Mandrells
Gas Injection Valve
Valve Subsystem
- Wellbore Subsystem
- perforation interval
- tubing shoe
- packer
13Compressor Sub-System
14Wellhead Sub-System
15Gas Lift Valve Sub-System
16Gas Lift Valve
Gas Injection
Tubing Pressure
Close condition
Open condition
17Kriteria Operasi Sumur Gas Lift
- There are four categories of wells in which a gas
lift can be considered - High productivity index (PI), high bottom-hole
pressure wells - High PI, low bottom-hole pressure wells
- Low PI, high bottom-hole pressure wells
- Low PI, low bottom-hole pressure wells
- Wells having a PI of 0.50 or less are classified
as low productivity wells. - Wells having a PI greater than 0.50 are
classified as high productivity wells. - High bottom-hole pressures will support a fluid
column equal to 70 of the well depth. - Low bottom-hole pressures will support a fluid
column less than 40 of the well depth.
182 Types of Gas Lift Operation
- A continuous gas lift operation is a steady-state
flow of the aerated fluid from the bottom (or
near bottom) of the well to the surface. - Continuous gas lift method is used in wells with
a high PI (05 stbdaypsi) and a
reasonably high reservoir pressure relative to
well depth.
- Intermittent gas lift operation is characterized
by a start-and-stop flow from the bottom (or near
bottom) of the well to the surface. This is
unsteady state flow. - Intermittent gas lift method is suitable to wells
with (1) high PI and low reservoir pressure or
(2) low PI and low reservoir pressure.
19Materi Perencanaan Sumur Gas Lift
- This chapter covers basic system engineering
design fundamentals for gas lift operations. - Relevant topics include the following
- Liquid flow analysis for evaluation of gas lift
potential - Gas flow analysis for determination of lift gas
compression requirements - Unloading process analysis for spacing subsurface
valves - Valve characteristics analysis for subsurface
valve selection - Installation design for continuous and
intermittent lift systems.
20Evaluation of Gas Lift Potential
- Evaluation of gas lift potential requires system
analyses to determine well operating points for
various lift gas availabilities. - The principle is based on the fact that there is
only one pressure at a given point (node) in any
system no matter, the pressure is estimated
based on the information from upstream (inflow)
or downstream (outflow). - The node of analysis is usually chosen to be the
gas injection point inside the tubing, although
bottom hole is often used as a solution node.
21Gas Injection Rates
- Four gas injection rates are significant in the
operation of gas lift installations - Injection rates of gas that result in no liquid
(oil or water) flow up the tubing. The gas amount
is insufficient to lift the liquid. If the gas
enters the tubing at an extremely low rate, it
will rise to the surface in small semi-spheres
(bubbly flow). - Injection rates of maximum efficiency where a
minimum volume of gas is required to lift a given
amount of liquid. - Injection rate for maximum liquid flow rate at
the optimum GLR. - Injection rate of no liquid flow because of
excessive gas injection. This occurs when the
friction (pipe) produced by the gas prevents
liquid from entering the tubing
22CONTINUOUS GAS LIFT
- THE GAS IS INJECTED CONTINUOUSLY TO ANNULUS
23Continuous Gas Lift Operation
- The tubing is filled with reservoir fluid below
the injection point and with the mixture of
reservoir fluid and injected gas above the
injection point. The pressure relationship is
shown in Fig. 13.4.
24Gas Lift OperationPressure vs Depth
25Parameter Design
- Jumlah gas injeksi yang tersedia
- Jumlah gas injeksi yang dibutuhkan
- Tekanan Gas Injeksi yang dibutuhkan di setiap
sumur - Tekanan Kompresor yang dibutuhkan
26Gas Injeksi yang diperlukan
- GAS LIFT PERFORMANCE CURVE
27Availability amount of Gas Injection
- Unlimited amount of lift
- gas
- In a field-scale valuation, if an unlimited
amount of lift gas is available for a given gas
lift project, the injection rate of gas to
individual wells should be optimized to maximize
oil production of each well.
- If only a limited amount of gas is available for
the gas lift, the gas should be distributed to
individual wells based on predicted well lifting
performance, that is, the wells that will produce
oil at higher rates at a given amount of lift gas
are preferably chosen to receive more lift gas.
28Kebutuhan Gas Injeksi (1)
- Nodal Analysis
- IPR Curve
- Tubing Performance Curve
- GLR formasi
- Variasi GLR
- GLR-total (assume)
- Qg-inj Qtotal Qq-f
- Plot Qg-inj vs Qliquid
29Kebutuhan Gas Injeksi (2)
- Qg-inj gtgt maka Qliq gtgt
- Pertambahan Qliq makin kecil dengan makin
meningkatnya Qg-inj - Sampai suatu saat dengan pertambahan Qg-inj, Qliq
berkurang - Titik puncak dimana Qliq maksimum disebut sebagai
Qoptimum
30Unlimited Gas Injection Case
- If an unlimited amount of gas lift gas is
available for a well, the well should receive a
lift gas injection rate that yields the optimum
GLR in the tubing so that the flowing bottom-hole
pressure is minimized, and thus, oil production
is maximized. - The optimum GLR is liquid flow rate dependent and
can be found from traditional gradient curves
such as those generated by Gilbert (Gilbert,
1954).
31Unlimited Gas Injection Case
- After the system analysis is completed with the
optimum GLRs in the tubing above the injection
point, the expected liquid production rate (well
potential) is known. - The required injection GLR to the well can be
calculated by
32Limited amount of gas injection
- If a limited amount of gas lift gas is available
for a well, the well potential should be
estimated based on GLR expressed as
33Gas Flow Rate Requirement
- The total gas flow rate of the compression
station should be designed on the basis of gas
lift at peak operating condition for all the
wells with a safety factor for system leak
consideration, that is,
where qg total output gas flow rate of the
compression station, scf/day Sf safety factor,
1.05 or higher Nw number of wells
34Point of Injection
35Output Gas Pressure Requirement (1)
- Kickoff of a dead well (non-natural flowing)
requires much higher compressor output pressures
than the ultimate goal of steady production
(either by continuous gas lift or by intermittent
gas lift operations).Mobil compressor trailers
are used for the kickoff operations.
36Output Gas Pressure Requirement (2)
- The output pressure of the compression station
should be designed on the basis of the gas
distribution pressure under normal flow
conditions, not the kickoff conditions. It can be
expressed as
37COMPRESSOR
38Output Gas Pressure Requirement (3)
- The injection pressure at valve depth in the
casing side can be expressed as - It is a common practice to use Dpv 100 psi. The
required size of the orifice can be determined
using the choke-flow equations presented in
Subsection 13.4.2.3
39Tekanan Tubing _at_ Valve Gas Lift
Dp _at_ tubing
Pwf
40Output Gas Pressure Requirement (4)
- Accurate determination of the surface injection
pressure pc,s requires rigorous methods such as
the Cullender and Smith method (Katz et al.,
1959). - However, because of the large cross-sectional
area of the annular space, the frictional
pressure losses are often negligible. - Then the average temperature and compressibility
factor model degenerates to (Economides et al.,
1994)
41Up-Stream Choke / Injection Choke
- The pressure upstream of the injection choke
depends on flow condition at the choke, that is,
sonic or subsonic flow. - Whether a sonic flow exists depends on a
downstream-toupstream pressure ratio. If this
pressure ratio is less than a critical pressure
ratio, sonic (critical) flow exists. - If this pressure ratio is greater than or equal
to the critical pressure ratio, subsonic
(subcritical) flow exists. The critical pressure
ratio through chokes is expressed as
42Gas Lift Injection Parameters
Compressor Pressure
Pwf
43Point of Injection
44Point of Balanced
45Unloading Valves Design
- Unloading ProcessGas Lift Wells
46Persiapan Operasi Sumur Gas Lift
47TAHAP O
Choke Tutup
- Katup Unloading sudah dipasang.
- Sumur masih diisi killing fluid
- Fluida produksi masih belum mengalir ke dalam
tubing
48Tahap I
- Pada Gambar 1 ditunjukkan penampang sumur yang
siap dilakukan proses pengosongan (unloading).
Pada tubing telah dipasang empat katup, yang
terdiri dari 3 katup, yaitu katup (1), (2) dan
(3), yang akan berfungsi sebagai katup unloading.
Sedangkan katup (4) akan berfungsi sebagai katup
operasi. Sebelum dilakukan injeksi semua katup
dalam keadaan terbuka. - Sumur berisi cairan work-over, ditunjukkan dengan
warna biru, dan puncak cairan berada diatas katup
unloading (1). - Gas mulai diinjeksikan, maka gas akan menekan
permukaan cairan work over kebawah, dan penurunan
permukaan cairan ini akan mencapai katup
unloading (1). Pada saat ini gas akan mengalir
dalam tubing melalui katup (1) yang terbuka.
No flow
Permukaan Killing fluid
Valve 1 Terbuka
Valve 2 Terbuka
Valve 3 Terbuka
Valve 4 Terbuka
49Tahap II
- Pada Gambar 2 gas injeksi mendorong permukaan
cairan work-over, dan telah me-lampaui katup
unloading (1) dan mencapai katup unloading (2).
Pada saat ini katup unloading (1) tertutup dan
gas injeksi mendorong permukaan cairan kebawah. - Bagian bawah tubing yang semula berisi cairan
work-over ditempati oleh fluida for-masi. - Pada saat ini gas akan masuk kedalam tubing,
melalui katup unloading (2) yang terbuka. Dengan
masuknya gas injeksi tersebut kedalam tubing maka
kolom cairan dalam tubing akan lebih ringan dan
aliran cairan work over ke permukaan akan
berlanjut.
Valve 1 Tertutup
Permukaan Killing fluid
Valve 2 Terbuka
Valve 3 Terbuka
Valve 4 Terbuka
Permukaan Fluida Res.
50Tahap III
- Pada Gambar 3 gas injeksi mendorong permukaan
cairan work-over, sampai me-lampaui katup
unloading (1), (2) dan (3). Setiap saat
permukaan kolom cairan work-over mencapai katup
unloading, maka gas injeksi akan mengalir masuk
kedalam tubing dan aliran cairan work-over dalam
tubing akan tetap berlangsung. Jika per-mukaan
kolom cairan work-over mencapai katup unlaoding
(3), maka katup unloading (2) akan tertutup, dan
gas injeksi akan masuk melalui katup unloading
(3). - Selama ini pula permukaan cairan formasi akan
bergerak ke permukaan. Pada saat cairan work-over
mencapai katup terakhir, yaitu katup operasi (4),
maka katup unloading (3) akan tertutup dan
seluruh cairan work-over telah terangkat semua ke
permukaan, dan hanya katup operasi yang terbuka.
Valve 1 Tertutup
Permukaan Fluida Res.
Valve 2 Tertutup
Valve 3 Tertutup
Valve 4 Terbuka
Permukaan Killing fluid
51TAHAP IV
- Pada Gambar 4 ditunjukkan bahwa semua cairan
work-over telah terangkat dan sumur berproduksi
secara sembur buatan. - Katup operasi (4) akan tetap terbuka, sebagai
jalan masuk gas injeksi kedalam tubing. Katup ini
diharapkan dapat bekerja dalam waktu yang lama.
Dimasa mendatang akan terjadi perubahan
perbandingan gas-cairan dari formasi, yang
cenderung menurun serta peningkatan produksi air,
maka jumlah gas injeksi dapat ditingkatkan dan
diharapkan katup injeksi dapat menampung
peningkatan laju injeksi gas tersebut. Dengan
demikian pemilihan ukuran katup injeksi perlu
direncanakan dengan baik.
Fluida Produksi
Valve 1 Tertutup
Valve 2 Tertutup
Valve 3 Tertutup
Valve 4 Terbuka
52(No Transcript)
53Unloading Valves Design
- gas lift Valve
- gas lift Valve Mechanics
54Gas Lift Valve
55Gas Lift Valve
56Contoh Penampang Sumur Gas Lift
Gas Lift Mandrell Gas Lift Valves
- Gas Lift Valves
- Mandrell Dummy Valves
- Mandrell Valves
- Valves Operating Conditions
- Casing pressure
- Test Rack Opening Pressure
- Port Size
- Temperature _at_ Lab.
- Jenis Valves
57Gas Lift Valve
58Penampang Gas Lift Valve
59Jenis Gas Lift Valves
60Gas Lift Valve
Gas Injection
Tubing Pressure
Close condition
Open condition
61Valve Mechanics
- Mekanika valve
- Closing opening pressure
62Mekanika Valve (MembukaMenutup)
- Dome berisi gas Nitrogen yang mempunyai tekanan
tertentu. - Gas Nitrogen ini menekan bagian dasar dome, Pd,
pada luas penampang bellow, Ab - Port terbuka untuk dilalui gas masuk kedalam
tubing, jika ujung stem tidak menempel pada port.
- Jika gaya membuka sedikit lebih besar dari gaya
menutup.
63Posisi Valve Tertutup
- Perkalian antara tekanan dalam dome, Pd, dengan
luas penampang bellow, Ab, menghasilkan gaya
kebawah yang mendorong stem dan ujung stem
kebawah, sehingga menutup port. Gaya ini disebut
sebagai gaya menutup. - Gaya menutup Fc Pd Ab
64Posisi Valve Terbuka
- Gaya membuka ini berasal dari tekanan gas injeksi
dari anulus, Pc yang menekan bellow ke atas, pada
luas penampang efektif sebesar (Ab-Ap) serta
tekanan fluida dari tubing, Pt (melalui port)
yang menekan ujung stem keatas. - Gaya membuka
- Pc (Ab - Ap) Pt Ap
65Keseimbangan Gaya Membuka dan Menutup
- Dalam keadaan seimbang, yaitu sesaat katup akan
membuka, gaya membuka sama dengan gaya menutup,
hal ini dapat dinyatakan sebagai berikut -
- Untuk tekanan tubing, Pt tertentu, gas akan
mengalir kedalam katup apabila -
- Jika persamaan (2) dibagi dengan Ab, maka
diperoleh persamaan berikut -
66Penentuan Tekanan Injeksi Katup Terbuka/Tertutup
- Apabila R Ap/Ab, maka
-
- Harga tekanan injeksi, Pc, dapat ditentukan
dengan persamaan berikut -
- Persamaan diatas dapat digunakan untuk menentukan
tekanan gas injeksi yang dibutuhkan untuk membuka
katup dibawah kondisi operasi.
67Contoh Soal
- Katup sembur buatan ditempatkan di kedalaman
6000 ft. - Tekanan dome dan tekanan tubing di kedalaman
tersebut masing-masing sebesar 700 psi dan 500
psi. Apabila Ab katup sebesar 1.0 in2 dan Ap
0.1 in2, tentukan tekanan gas di annulus yang
diperlukan untuk membuka katup. - Perhitungan
- R Ap/Ab 0.1/1.0 0.1
- Pd 700 psi
- Pt 500 psi
- Dengan menggunakan persamaan (5), tekanan gas
injeksi yang diperlukan untuk membuka katup
sebesar - Pc (700 - 500(0.1) / (1.0-0.1) 722 psi
68Penentuan Tekanan Dome
Pd ?
Pada Temperature Di kedalaman Valve
Test Rack Opening Pressure
Diubah menjadi Tekanan pada Temperatur Bengkel
69DOME PADA GAS LIFT VALVE
- Dome pada Gas Lift Valve, diisi gas Nitrogen
sejumlah mole tertentu, sehingga dapat memberikan
tekanan tutup valve yang sesuai. - Sesuai dengan
- P VZ n R T
70Penentuan Tekanan Dome
- Tekanan dome _at_ TD Pd
- Tekanan casing _at_ D Pc
- Test Rack (di Bengkel)
- Tekanan dome _at_ TD
- convert
- Tekanan dome _at_ 60 oF
- (Tabel 5-3)
- Tekanan buka valve, pvo
Gradien Aliran _at_ tubing
_at_TD
Gradien gas injeksi
Tabel 5-3
71 Temperatur pada Valve
T-surface
Gradient Temperatur Aliran
Gradient Geothermal (oF/ft)
Retreivable valve
Non-Retreivable valve
T-bottom
72Penentuan Opening/ClosingPressure di Bengkel
73Penentuan Test Rack Opening Pressure
P1 Pc P2 0
74Ptro (1)
- Keseimbangan Gaya Buka dan Gaya Tutup, pada Pt
Patm - Dimana Pvc tekanan tutup di bengkel
- Jika R Ap/Ab, maka
- Maka P-dome di bengkel
75Ptro (2)
- Gaya Buka hanya dipengaruhi oleh Pvc, yaitu
- Pd di set pada temperatur bengkel (60oF)
- Perlu dilakukan koreksi terhadap temperatur pada
kedalaman valve
76Faktor Koreksi Tekanan Gas Nitrogen Dalam Dome
(pada Temperatur Bengkel 60 oF)
PV ZnRT _at_ Tv PV ZnRT _at_ 60 oF
77Perhitungan Tekanan _at_ Bellow secara Analitis
- P(x) tekanan rata-rata yang bekerja
- pada bellow
- Pvi P(x) yang diperlukan untuk
- membuka katup
- z pergerakan stem dari posisi tertutup
- k cp/cv
- Ab luas permukaan bellow
- Pdi tekanan dome awal
- Pd(x)tekanan dome jika stem bergerak
- sejauh x
78Penentuan Ukuran Port Valve
- Q laju alir gas, MCF/d
- Cd discharge coefficient
- Ap luas penampang port
- Pu tekanan injeksi gas dalam
- annulus, psia
- k cp/cv
- R perbandingan antara
- tekanan upstream dengan
- downstream
- T temperatur aliran
- gg specific gravity gas
Laju Alir pada kondisi kritik
Atau dengan menggunakan Grafik, yang dibuat pada
kondisi
Specific Gravity gas 0.65 Temperatur alir 60
oF Tekanan dasar 14.65 psia k cp/cv
1.27 Discharge coeficient 0.865
79Penentuan Ukuran Port R
- Berdasarkan rate injeksi (di permukaan Mscf/d),
qgi, sc tentukan rate injeksi _at_ TD - Berdasarkan Pt dan Pc, gunakan Gambar 5-22, untuk
menentukan ukuran Port - Pt downstream press
- Pc upstream press
80Unloading Valve Design
- Penempatan valve unloading
- Valve spacing
81- Various methods are being used in the industry
for designing depths of valves of different
types. They are the universal design method, the
API-recommended method, the fallback method, and
the percent load method. - However, the basic objective should be the same
- 1. To be able to open unloading valves with
kickoff and injection operating pressures - 2. To ensure single-point injection during
unloading and normal operating conditions - 3. To inject gas as deep as possible
82- No matter which method is used, the following
principles apply - The design tubing pressure at valve depth is
between gas injection pressure (loaded condition)
and the minimum tubing pressure (fully unloaded
condition). - Depth of the first valve is designed on the basis
of kickoff pressure from a special compressor for
well kickoff operations. - Depths of other valves are designed on the basis
of injection operating pressure. - Kickoff casing pressure margin, injection
operating casing pressure margin, and tubing
transfer pressure margin are used to consider the
following effects - Pressure drop across the valve
- Tubing pressure effect of the upper valve
- Nonlinearity of the tubing flow gradient curve.
83Test II Kamis, 26 Februari 2009
84(No Transcript)
85(No Transcript)