Title: DNA Sequencing
1DNA Sequencing
From Extraction to Information
2The Process
- Step 1 DNA Extraction
- Genomic DNA extraction from the organism
(bacteria)
- Step 2 PCR Amplification
- Amplification of the DNA segment of interest (16S
gene)
- Step 3 DNA Sequencing
- Sequencing of the PCR product (amplified 16S gene)
3Step 1 DNA Extraction
DNA Extraction
DNA
Cells with DNA
4Step 2 PCR Amplification
PCR Product (Amplified Target Gene)
Target Gene
Target Gene
PCR Amplification
DNA
5Step 3 DNA Sequencing
PCR product (Amplified Target Gene)
Sequence of Target Gene
DNA Sequencing
AGCTGCTAAGCTTG AGCTTGCACAAGCT TAGCTTGCAAGCTT AGCTT
GCAAGCTTG CAAGCTTGCAAGCT TGCAAGCTTGCAAG CTTGCAACGT
TGCA AGCTTGCAAGCTTG AAGCTTGCAAGCTA
6Chapter 1 DNA Extraction
7The Cell and its Components
DNA (1)
phospholipids (2)
30 chemicals
polysaccharides (2)
Ions, small molecules (4)
RNA (6)
70 H2O
proteins (15)
8Three basic steps of DNA extraction
- Disruption of cell and lysis
- Removal of proteins and other biochemicals
- Recovery of DNA
9Disruption of cell and lysis
- Cells are broken down into components using a
Lysis Buffer containing - EDTA disrupts cell membrane and inhibits DNases
- SDS denatures proteins and solubilizes cell
membranes - Proteinase K breaks down proteins
- RNase A breaks down RNA
- Solution is incubated at 55ºC 1-3 hours (or
overnight)
10Disruption of cell and lysis
DNA
RNA
ions
lipids
proteins
EDTA
RNase A
SDS
Proteinase K
EDTA
11Disruption of cell and lysis
- After lysis, cell extract contains DNA, proteins,
and other chemicals/biochemicals
cell extract
12Removal of proteins and biochemicals
- Solid phase binding (silica membrane)
- Cell extract is applied to a silica membrane
column - DNA binds to membrane
- all other molecules flow through and are removed
DNA bound to membrane
Silica membrane
centrifugation
cell extract
flow-thru
13Recovery of DNA
- Elution of silica membrane
- a low-salt buffer or water is added to the
membrane - bound DNA falls off of the membrane
elution
add water (or buffer)
DNA bound to membrane
centrifugation
DNA in solution
14Review Step 1 DNA Extraction
DNA Extraction
DNA
Cells with DNA
15Chapter 2 PCR Amplification
16Step 2 PCR Amplification
PCR Product (Amplified Target Gene)
Target Gene
Target Gene
PCR Amplification
DNA
17Part I DNA Polymerization
18DNA Building Block
base
5
P
P
P
OCH2
O
sugar
4
1
H
H
phoshpate groups
3
2
OH
H
deoxyribose nucleotide triphosphate (dNTP)
19DNA Polymerization Basics
A
Existing DNA Strand
O
G
O
P
O
C
O
P
O
T
O
P
Phosphodiester bond
O
H
dNTP
O
T
P
P
P
O
H
A
O
P
P
P
O
H
O
C
P
P
P
O
H
20DNA Polymerization
- The synthesis of DNA requires
- DNA template
- Primer short oligonucleotide necessary for DNA
polymerase to start - DNA polymerase enzyme that constructs the DNA
chain - deoxyribonucleotide triphosphates (dNTPs)
building blocks of DNA
A
C
C
G
G
G
A
A
G
C
C
C
C
G
G
A
T
G
A
DNA polymerase
C
A
T
G
DNA polymerase
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
21DNA Replication Review
- Step 1 Denaturation separation of the two
strands of the DNA duplex - Gyrase pulls apart the strands creating a
replication bubble - Helicase travels down DNA molecule, breaking the
hydrogen bonds that hold the two strands together
gyrase
helicase
helicase
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
gyrase
22DNA Replication Review
- Step 2 Annealing of primers to the DNA template
strand - Primase synthesizes small complementary strands
of RNA (primers) to the single strands of the
DNA template
primase
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
G
C
C
C
C
G
G
A
T
G
A
G
primase
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
23DNA Replication Review
- Step 3 Extension of newly constructed
complementary DNA molecules - DNA polymerase adds bases to the ends of the
primers, constructing an exact copy of the
template
DNA polymerase
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
G
C
C
C
C
G
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
DNA polymerase
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
24DNA Replication Review
- Another DNA Polymerase replaces the RNA primer
with dNTPs - The final result two copies of replicated DNA
DNA polymerase
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
G
C
C
C
C
G
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
DNA polymerase
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
G
A
T
G
A
G
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
25Polymerization
1) DNA Template
Mg2
Mg2
Mg2
Mg2
Mg2
Mg2
Mg2
2) Primer
3) DNA Polymerase
Mg2 ions
4) dNTPs
dNTPs
5) Mg2 ions
DNA Polymerase
DNA Polymerase
Primer
Phosphodiester bond
DNA Template
26Part II PCR
27The Polymerase Chain Reaction
- Polymerase Chain Reaction cycling process
consisting of the same 3 steps of DNA
replication, with some differences - temperature cycling removes the need for other
enzymes (gyrase/helicase, or primase) - PCR uses pre-made oligonucleotide DNA primers
gyrase
DNA polymerase
primase
helicase
28The Polymerase Chain Reaction
- During PCR, a thermocycler brings the reaction
mix to 3 different temperatures analagous to the
3 steps of DNA replication - Denaturation (94C) of the DNA template by heat
- Annealing (37-70C) of the primers to the
template - Extension (72C) of the DNA strand by DNA
polymerase - These steps are repeated for 25 to 30 cycles
94C
65C
72C
denaturation
annealing
extension
29Thermocycler Program
- Initial Denaturation 94C 2 min
- Start Cycle
- Denaturation 94C 30 sec
- Annealing 65C 30 sec
- Extension 72C 30 sec
- Repeat Cycle 29 times (total 30 cycles)
- Final Extension 72C 7 min
- Hold 4C 8
30Denaturation
- Denaturation occurs at 94C
- The high temperature is used to break down the
hydrogen bonds that hold the two strands together
94C
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
31Annealing
- Annealing occurs at 37-70C
- Oligonuclotide DNA primers anneal to their
complementary sequences on the template strands - Annealing temperature depends on the melting
temperature (Tm) of the primer (dependent on base
composition)
65C
94C
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
32Extension
- Extension occurs at 72C
- DNA polymerase attaches to the primers and
extends the new DNA strand - The 3 steps (denaturation, annealing, and
extension) are repeated for another 24 to 29
cycles
72C
65C
DNA polymerase
G
A
T
G
A
G
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
T
A
G
T
A
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
DNA polymerase
T
C
A
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
G
G
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
33Target Sequence
- A desired target sequence is identified
- To isolate the target sequence, primers that
flank the region must be constructed - The DNA segment that is then amplified contains
the region of interest
Template DNA
Forward Primer
Reverse Primer
Target Sequence of interest
PCR Product
34PCR Cycle 1
Denaturation
Extension
Annealing
DNA Copies
4
Target Copies
0
Target Sequence of interest
35PCR Cycle 2
Denaturation
Extension
Annealing
DNA Copies
8
Target Copies
2
36PCR Cycle 3
Denaturation
Extension
Annealing
DNA Copies
16
Target Copies
8
37PCR Cycle 4
Denaturation
Extension
Annealing
DNA Copies
32
Target Copies
22
38PCR Cycle 5
Denaturation
Extension
Annealing
DNA Copies
64
Target Copies
52
39PCR Amplification First 10 cycles
40PCR Amplification First 15 cycles
41PCR Amplification After 30 cycles
42PCR Amplification After 30 cycles
Cycle Target Copies Cycle Target Copies
1 0 16 65,504
2 0 17 131,038
3 2 18 262,108
4 8 19 524,250
5 22 20 1,048,536
6 52 21 2,097,110
7 114 22 4,194,260
8 240 23 8,388,562
9 494 24 16,777,168
10 1,004 25 33,554,382
11 2,026 26 67,108,812
12 4,072 27 134,217,674
13 8,166 28 268,435,400
14 16,356 29 536,870,854
15 32,738 30 1,073,741,764
43Review Step 1 DNA Extraction
DNA Extraction
DNA
Cells with DNA
44Review Step 2 PCR Amplification
PCR Product (Amplified Target Gene)
Target Gene
Target Gene
PCR Amplification
DNA
45Chapter 3DNA Sequencing
46Nucleotides
BASE
BASE
OCH2
P
P
P
OCH2
P
P
P
O
O
H
H
H
H
OH
H
OH
OH
deoxyribose NTP (dNTP) (Makes up DNA)
ribose NTP (NTP) (Makes up RNA)
BASE
OCH2
P
P
P
O
H
H
H
H
dideoxyribose NTP (ddNTP)
47DNA Sequencing
- Dideoxy method of DNA sequencing (Sanger Method)
- Single-stranded DNA to be sequenced serves as a
template strand for DNA synthesis - single primer is used for DNA synthesis
initiation - use of dNTPs along with labeled ddNTPs
BASE
BASE
OCH2
OCH2
P
P
P
P
P
P
O
O
H
H
H
H
OH
H
H
H
dNTP
ddNTP
48DNA Polymerization using ddNTPs
A
A
O
O
G
O
P
G
O
P
O
O
C
O
P
C
O
P
O
O
T
O
P
C
O
P
O
H
O
H
T
O
P
P
P
T
O
P
P
P
O
H
H
A
O
P
P
P
A
O
P
P
P
O
H
O
H
C
O
P
P
P
Chain Termination
O
H
49Sequence Reaction
- BigDye Terminator v3.1 Sequencing
- a Dye Terminator Cycle Sequencing Master Mix is
used for sequencing reaction. - Components include
- DNA polymerase I, Mg2, buffer
- dNTPs in ample quantities
- (dATP, dTTP, dCTP, dGTP)
- ddNTPs in limited quantities, each labeled with a
tag that fluoresces a different color - (ddATP, ddTTP, ddCTP, ddGTP)
50The Polymerase Chain Reaction
- PCR makes use of a thermocycler to bring the
reaction mix to three different temperatures - Denaturation (94C) of the DNA template by heat
- Annealing (37-70C) of the primers to the
template - Extension (72C) of the DNA strand by DNA
polymerase - These steps are repeated for 25 to 30 cycles
94C
65C
72C
denaturation
annealing
extension
51Sequencing Reaction
- Sequencing reaction is a cycled reaction using a
thermocycler (as in the Polymerase Chain
Reaction) - Like PCR, it consists of 3 steps
- Denaturation, Annealing, Extension
- these 3 steps are repeated for 30 cycles
- Unlike PCR, it involves a single primer and
labeled ddNTPs - extension proceeds normally until, by chance, DNA
polymerase inserts a ddNTP, terminating the chain
52Sequencing Reaction
DNA polymerase
G
A
A
C
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
53Sequencing Reaction
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
DNA polymerase
G
A
A
C
T
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
54Sequencing Reaction
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
DNA polymerase
G
A
A
C
T
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
55Applied Biosystems 3130xl Genetic Analyzer
- 16-channel capillary electrophoresis capable of
various genomic analysis functions
56Capillary Electrophoresis
- the sequencing reactions are loaded into the
ABI3130xl - Samples are taken up by capillaries containing
polyacrylamide gel (Performance Optimized Polymer
(POP-7) - Fragments are separated by length from shortest
to longest by electrophoresis
Detector
-
Capillary array
Laser
Samples
57Electrophoresis
- Electrophoresis is a technique used to separate
DNA or protein molecules on the basis of size and
charge - Typical method used for analyzing, identifying
and purifying DNA fragments
58Movement in an Electric Field
- The mobility of molecules in the electrical field
is also affected by their overall size or
molecular weight
Lower Molecular weight
Higher Molecular weight
Agarose gel
59DNA Gel Electrophoresis
These markers are run alongside samples, Helps
determine the length of the PCR sample DNA
fragments of the same length will migrate through
the gel at the same rate
1500bp
1200bp
1100bp
1000bp
1050bp
900bp
800bp
820bp
700bp
650bp
600bp
500bp
400bp
400bp
300bp
280bp
200bp
100bp
60Electrophoresis
- As the sample travels through the capillaries
- Shorter fragments have less resistance and
migrate faster - Longer fragments have more resistance and move
slower
-
61Fluorescense detection
- As fragments pass through detector window, the
fluorescent tag of the ddNTP is excited by a
laser - The emission of the tag is picked up by a
detector and is translated to a colored peak
unique to the nucleotide
C
T
G
A
62Sequencing Reaction
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
G
C
C
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
T
G
T
C
C
G
T
A
C
A
A
C
T
G
G
C
G
T
A
A
T
C
A
T
G
DNA polymerase
G
A
A
C
T
C
C
T
A
C
T
C
A
A
G
C
A
C
A
G
G
C
A
T
G
T
T
G
A
C
C
G
C
A
T
T
A
G
T
A
C
C
G
G
G
A
A
G
C
C
C
C
G
63Capillary Electrophoresis
- As the sample travels through the capillaries
- Shorter fragments have less resistance and
migrate faster - Longer fragments have more resistance and move
slower
-
64Detection of fluorescent tags
C
G
T
A
A
A
C
A
C
G
G
C
C
C
T
T
C
G
G
G
G
C
65Final Data
- The final data generated is the complete
chromatogram and the text version of the DNA
sequence
ACAACTGGCGTGAATCATGGCCCTTCGGGGCCATTGTTTCTCTGTGGAGG
AGTGCCATGACGAAAGATGAACTGATTGCCCGTCTCCGCTCGCTGGGTGA
ACAACTGAACCGTGATGTCAGCCTGACGGGGACGAAAGAAGAACTGGCGC
TCCGTGTGGCAGAGCTGAAAGAGGAGCTTGATGACACGGATGAAACTGCC
GGTCAGGACACCCCTCTCAGCCGGGAAAATGT
66Review Step 1 DNA Extraction
DNA Extraction
DNA
Cells with DNA
67Review Step 2 PCR Amplification
PCR Product (Amplified Target Gene)
Target Gene
Target Gene
PCR Amplification
DNA
68Review Step 3 DNA Sequencing
PCR product (Amplified Target Gene)
Sequence of Target Gene
DNA Sequencing
AGCTGCTAAGCTTG AGCTTGCACAAGCT TAGCTTGCAAGCTT AGCTT
GCAAGCTTG CAAGCTTGCAAGCT TGCAAGCTTGCAAG CTTGCAACGT
TGCA AGCTTGCAAGCTTG AAGCTTGCAAGCTA
69BWET.PL4.8F Sequence
70BWET.PL4.8F Sequence
- GCAGTCGAGCGGAACGAGTTATCTGAACCTTCGGGGAACGATAACGGCGT
CGAGCGGCGGACGGGTGAGTAATGCCTGGGAAATTGCCCTGATGTGGGGG
ATAACCATTGGAAACGATGGCTAATACCGCATAATAGCTTCGGCTCAAAG
AGGGGGACCTTCGGGCCTCTCGCGTCAGGATATGCCCAGGTGGGATTAGC
TAGTTGGTGAGGTAAGGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGA
GAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGG
AGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCAT
GCCGCGTGTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCAGTGA
GGAAGGTGGTGATGTTAATAGCATCATCATTTGACGTTAGCTGCAGAAGA
AGCACCGGCTAACTCCGTGCCAGCCG
71BLAST
- BLAST Basic Local Alignment Search Tool
- www.ncbi.nlm.nih.gov/blast
- an unknown sequence can be matched up to known
sequences published in GenBank - Lists all sequences producing significant
alignments - Gene identification
- Organism genus/species
- identity alignment/match
72BLAST Results of BWET.PL4.8F
73BLAST Results of BWET.PL4.8F
- Summary of best match
- Vibrio sp. BISLTS1 16S ribosomal RNA gene
- Identities 435/436 (99)
74The End