Title: Photonic Band Gap Materials:
1Photonic Band Gap Materials The Semiconductors
of the future?
C. M. Soukoulis Ames Lab. and Physics Dept. Iowa
State University. and Research Center of Crete,
FORTH - Heraklion, Crete
2Collaborators
- Ames Laboratory, Iowa State University
- Mike Sigalas (Agilent)
- Gary Tuttle, W. Leung
- Ekmel Ozbay (Turkey)
- Rana Biswas
- Mario Agio (Pavia), P. Markos (Slovakia)
- E. Lidorikis (MIT), S. Foteinopoulou
- C.T. Chan (Hong-Kong)
- K.M. Ho
- Research Center of Crete
- E. N. Economou
- G. Kiriakidis, N. Katsarakis, M. Kafesaki
- PCIC
3 Computational Methods
- Plane wave expansion method (PWE)
- C.T. Chan, K.M. Ho, E. Lidorikis, S.
Foteinopoulou - Transfer matrix method (TMM)
- M. Sigalas, I. El-Kady, P. Markos, S.
Foteinopoulou - Finite-difference-time-domain-method (FDTD)
- M. Agio, M. Kafesaki, E. Lidorikis, S.
Foteinopoulou
soukoulis_at_ameslab.gov soukouli_at_iesl.forth.gr
http//cmpweb.ameslab.gov/personnel/soukoulis
4PHOTONIC BAND GAP STRUCTURES THE
SEMICONDUCTORS OF THE FUTURE?
PBG Crystals Periodic variation of dielectric
constant Length scale ? Man-made
structures Control e.m. wave propagation 1990s
optical fibers, lasers, PBGs --gt photonics era
Semiconductors Periodic crystal
potential Atomic length scales Crystal
structure given by nature Control electron
flow 1950s electronic revolution
5(No Transcript)
6Fermis Golden Rule
hv
Density of final states
7Applications Microwaves
Dielectric
Photonic Crystal
Efficient planar antennas
8Applications Optical range
Suppression of spontaneous emission
Low-threshold lasers, single-mode LEDs, mirrors,
optical filters
9APPLICATIONS OF PBG MATERIALS
- Frequency-selective, loss-less reflection
- Filters, switches, optical amplifiers
- Areas impacted
- Automotive electronics - e.g.,
collision-avoidance - radar (60-77 GHz)
- Electron cyclotron resonance heating for fusion
plasma, - diagnostic tool (60-200 GHz)
- Medical and biological application - e.g.,
microwave - resonance therapy (40-80 GHz), imaging
- Wide bandwidth communication (60, 94 GHz)
- mm waveguides
- Fast electronics - interchip communication
- Remote sensing - e.g., monitoring atmospheric
radiation - observational astronomy
- Lasers and optical devices - improved
performance in - efficiency and reduction of background noise
- Photocatalysis
mm wave
Infra-red
visible
10Outline
- Progress in fabricating 3D photonic crystals
- Layer-by-Layer structure (ISU)
- 3-cylinder structure (LIGA)
- Inverse opals and ordered silica matrices (many
groups) - Metallic photonic crystals
- Metallic and dielectric bends
- Photonic Crystal Waveguides and Bends (2D slabs
or 3D PCs) -
- Studies of the losses and effects of disorder
11(No Transcript)
12Three - cylinder Structure or Yablonovite
E. Yablonovitch
Diamond like symmetry. PRL 65, 3152 (1990) and
Euro. Phys. Lett. 16, 563 (1991)
133-cylinder structure
E. Yablonovitch et. al. PRL 67, 3380 (1991)
14Fabrication of 3-cylinder structure by LIGA
technique
ISU, FORTH and Mainz
Appl. Phys. Lett. 71, 1441 (1997)
15experiment
v2.4 THz
Appl. Phys. Lett. 71, 1441 (1997)
16Diamond lattice gives the largest photonic band
gap
Ho, Chan and Soukoulis, PRL 65, 3152 (1990)
17Diamond lattice
Ho, Chan and Soukoulis, PRL 65, 3152 (1990)
18Photonic band gap formation
A synergetic interplay between microscopic (Mie)
and macroscopic (Bragg) resonances.
d
eo
r
ei
Bragg scattering 2d ml?????? w?/c m p / d,
m1,2,
Mie resonance 2r/li (m1)/2, m0,1,2,
Maximum reflection (m0)
Gap appears when
(filling ratio)
?
19Experimental band structure of a fcc lattice of
air spheres
Fcc Airball(86) n3.5
Gap
Yablonovitch Gmitter, PRL 63, 1950 (1989)
20FCC lattice has only a pseudogap
Ho, Chan and Soukoulis, PRL 65, 3152 (1990)
21Density of States for a fcc structure of air
spheres
figure
Ho, Chan and Soukoulis, PRL 65, 3152
(1990) Sozuer, Haus and Inguva, PRB 45, 13962
(1992) v Busch and John, PRE 58, 3896 (1998)
22Band structure for a close-packed fcc lattice of
air spheres in silicon
Busch and John, PRE 58, 3896 (1998)
23DOS for a close-packed fcc lattice of air spheres
in silicon
Busch and John, PRE 58, 3896 (1998)
24Air Spheres (e1) in Dielectric (e10) fcc
arrangement with Air filling ratio
74 supercell 3?3?3, k-point sampling 8?8?8,
total grids 72?72?72
Disorder In Position
DOS
wa/2pc
Lidorikis, Soukoulis
25Air Spheres (e1) in Dielectric (e10) fcc
arrangement with Air filling ratio
74 supercell 3?3?3, k-point sampling 8?8?8,
total grids 72?72?72
Disorder In Radius
ltrmsgt Average rms error in dielectric const.
Dv D(V/V0)
ltrmsgt Dv
DOS
wa/2pc
Lidorikis, Soukoulis
26Carbon structures with 3d periodicity at optical
wavelengths
A. Zakhidov et. al. Science, 282, 897(1998)
27On-chip natural asembly of silicon photonic
bandgap structures
Y. A. Vlasov et. al. Nature, 414, 289 (2001)
28Inversed opals infiltrated by liquid crystals
K. Busch and S. John, PRL 83, 967 (1999)
29Silicon inverted opals
A. Blanco et. al. Nature 405, 437 (2002)
30Fabrication of photonic crystals by holographic
lithography
M.Campell et. al. Nature, 404, 53 (2000)
31An easy-to-build structure with a full photonic
band gap
Iowa State layer-by-layer structure Science News
144, 199 (1993) Solid State Comm. 89, 413
(1994) Phys. Rev. B 50, 1945 (1994)
32Iowa State Universitys layer-by-layer structure
Diameter of Rods Spacing of Rods Midgap Frequency Corresponding Wavelenth at Midgap
0.32 cm 1.120 cm 13 GHz 23 mm v
0.20 cm 0.711 cm 20 GHz 15 mm v
0.08 cm 0.284 cm 50 GHz 6 mm v
340 micron 1275 micron 100 GHz 3 mm v
100 micron 350 micron 450 GHz 0.66 mm v
1.33 micron 4.74 30 THz 10 micron
0.20 micron 0.711 2 x 1014 Hz 1.5 micron
667 Ã… 2370 Ã… 6 x 1014 Hz 5000 Ã…
!!
!!!
?
??
Science News 144, 199 (1993) Solid State Comm.
89, 413 (1994) Phys. Rev. B 50, 1945 (1994)
33Iowa State Universitys layer-by-layer structure
Sandia National Laboratory.
Iowa State University Ames Laboratory
34Electro magnetic waves are incident on the side
surface
35Theory and experiment is in excellent agreement
36An average attenuation of 16 dB per unit cell is
obtained
37Theoretical (dashed line) and experimental (solid
line) transmission characteristics of the defect
structure
38The ISU layer by layer structure fabricated at
Kyoto Univ.
S. Noda et. al. Science, 289, 604 (2000)
39S. Noda et. al. Science, 289, 604 (2000)
40S. Y. Lin et. al. Nature, 394, 251 (1998)
41(No Transcript)
42R. Biswas, ISU
43(No Transcript)
44Propagation along 90 bends in 3d dielectric
structures
S. Noda, Kyoto Univ.
M. Sigalas et. al. Microwave Opt. Techn. Lett.
23, 56 (1999)
45Metallic Structure
46Metallic Structure
47(No Transcript)
48Propagation along 90 bends in 3d metallic
structures
Transmission along the bend is more than 95 !!
M. Sigalas et. al. Phys. Rev. B 60, 4426 (1999)
49Agio and Soukoulis, PRE, 64, 055603R (2001)
50Waveguide modes for widths of W1 and W3
51(No Transcript)
52 Guided bends in Photonic Crystals - Study of
60o bends in W3 and W5 --Best the
smoothest one in collaboration with PCIC
groups
53W3 taperslit double bends
Field profile for a/l0.24
Modal analysis for slit2
54(No Transcript)
55Studies of the out of plane losses
56Photonic Crystal Slabs
Kafesaki, Agio, Soukoulis, JOSA B (2002)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62Comparison of 2D and 3D results
3D
2D
3D results can be derived by an effective 2D
system with a slightly different f and an
imaginary e
632D and 3D gaps almost coincide in position and
width.
64Y-Splitters
65Summary and Conclusions
- The layer-by-layer structure has been fabricated
at telecom frequencies - Inverse closed packed structures with high index
materials (TiO2, Si, Ge) - Doping of PBGs with active atoms and molecules
will lead to new - frontiers in microlasers, low threshold
switches, random lasers - Metallic PBGs. Connectivity is very important
- Photonic Crystal Waveguides and Bends (3d
structures or dielectric slabs) - Tunable PBGs
- Detailed studies of disorder are very important
66Summary
- The photon band structure problem is solved
- Photonic gaps EXIST in diamond like structures
- Structure is optimized to give largest gap
- Localization of light in imminent
Experimental Challenge
Fabricate these new dielectric structures at
optical wavelengths, then Applications of
photonic gaps in physics and engineering may
become possible.