Title: MONOLIX DAY
1MONOLIX DAY
- November 16th, 2009
- Maison de la Recherche, Paris
2Schedule
- 9.15 Monolix 3.1 presentation
- Monolix presentation demos, Marc Lavielle
(INRIA) - Monolix, an academic project, France Mentre
(INSERM) - The regulatory agencies promote innovation,
Demiana Faltaos (FDA, Washington) - 10.45 Pause
- 11.00 Monolix in the industry
- A. Vermeulen (Johnson and Johnson, Beerse)
- A. Lemenuel (Roche, Bâle)
- A. Soubret (Novartis, Bâle)
- C. Veyrat-Follet (Sanofi Aventis, Chilly-Mazarin)
- C. Laveille (Exprimo, Mechelen)
- 12.30 Buffet
3The MONOLIX software
- Free software for the analysis of nonlinear mixed
effects models - Result of scientific collaborations between
academics INRIA, INSERM, Universities
Paris-Descartes, Paris-Sud, Paris-Diderot, - MONOLIX 2 was developed with the financial
support of Johnson Johnson Pharmaceutical R
D. - Version 3.1 available at
- http//software.monolix.org
4The MONOLIX software project
- Objective develop the next versions of the
MONOLIX software with a view to raising its level
of functionalities and responding to major
requirements of the bio-pharmaceutical industry. - Actual members
5The MONOLIX Team
- Benoit CHARLES
- Kaelig CHATEL
- Morgan GUERY
- Hector MESA
- Eric BLAUDEZ (February 2010)
6Some new features in Monolix 3.1
- Technical features (multi-core architecture,
object-oriented programming, multiplatforms), - Outputs (enhanced tables),
- Residual error models (autocorrelation,
predefined error models), - MLXTRAN for PK models (complex administrations,
transit compartments), - Complex data designs (IOV, Steady-State),
- Discrete data models (categorical data, count
data and Hidden Markov models),
7Some new features in Monolix 3.1
- Technical features (multi-core architecture,
object-oriented programming), - Outputs (enhanced tables),
- Residual error models (autocorrelation,
predefined error models), - MLXTRAN for PK models (complex administrations,
transit compartments), - Complex data designs (IOV, Steady-State),
- Discrete data models (categorical data, count
data and Hidden Markov models),
8Some new features in Monolix 3.1
- Technical features (multi-core architecture,
object-oriented programming), - Outputs (enhanced tables),
- Residual error models (autocorrelation,
predefined error models), - MLXTRAN for PK models (complex administrations,
transit compartments), - Complex data designs (IOV, Steady-State),
- Discrete data models (categorical data, count
data and Hidden Markov models),
9Residual error model
Predefined error models
Autocorrelated residual errors
10Residual error model
For example
11Some new features in Monolix 3.1
- Technical features (multi-core architecture,
object-oriented programming), - Outputs (enhanced tables),
- Residual error models (autocorrelation,
predefined error models), - MLXTRAN for PK models (complex administrations,
transit compartments), - Complex data designs (IOV, Steady-State),
- Discrete data models (categorical data, count
data and Hidden Markov models),
12Transit compartment model
not with SAEM ?
13Transit compartment model
14Some new features in Monolix 3.1
- Technical features (multi-core architecture,
object-oriented programming), - Outputs (enhanced tables),
- Residual error models (autocorrelation,
predefined error models), - MLXTRAN for PK models (complex administrations,
transit compartments), - Complex data designs (IOV, Steady-State),
- Discrete data models (categorical data, count
data and Hidden Markov models),
15Some new features in Monolix 3.1
- Technical features (multi-core architecture,
object-oriented programming), - Outputs (enhanced tables),
- Residual error models (autocorrelation,
predefined error models), - MLXTRAN for PK models (complex administrations,
transit compartments), - Complex data designs (IOV, Steady-State),
- Discrete data models (categorical data, count
data and Hidden Markov models),
16Categorical data models
- Proportional odds model (K categories)
- yij 1, 2, 3, ..., K
- Modeling of probabilities
- P(yij 1) , P(yij 2), ... , P(yij K-1)
-
- Modeling of cumulative probabilities
- P(yij 1) , P(yij 2), ... , P(yij K-1)
- or
- P(yij 2) , P(yij 3), ... , P(yij K)
17MONOLIX IMPLEMENTATION(ordered categorical data)
- PROBLEM Ordered categorical model
- PSI th1 th2 th3 th4 th5
- REG OCC DOSE
- CATEGORICAL(0,3)
- LOGIT1(Ygt1) -th1 - th4OCC - th5DOSE
- LOGIT1(Ygt2) -th1 - th4OCC - th5DOSE - th2
- LOGIT1(Ygt3) -th1 - th4OCC - th5DOSE - th2 -
th3 - OUTPUT
- OUTPUT1 LL1
18Results Proportional Odds Model
- Scenario B
- Baseline model
- Data with 4 categories
- Proportions of observation equal to category
0/1/2/3 at baseline 82.5/10/5/2.5
LAPLACE in NONMEM
SAEM in MONOLIX
?2
?2
?2
19Count data models
yij - observation k - count ?i - inividual
parameter ?exp(hi)
20MONOLIX IMPLEMENTATION(count data)
- PROBLEM Basic Poisson model
- PSI lambda
- COUNT
- LL1(Yk) -lambda klog(lambda) - factln(k)
- OUTPUT
- OUTPUT1 LL1
21Results Count data model
- Models Handling overdispersion/underdispersion
- Generalized Poisson (GP)
- Negative binomial (NB)
- Zero-inflated Poisson (ZIP)
LAPLACE in NONMEM
Relative estimation error ()
SAEM in MONOLIX
22ResultsSAEM in MONOLIXRelative SEs
Categorical data
?1 ?2 ?1 ?2
?1 ?2 ?1 ?2
?1 ?2 ?1 ?2
Absolute estimation error ()
Count data
?1 ?2 ?1 ?2
?1 ?2 ?1 ?2
?1 ?2 ?1 ?2
23Run times NONMEM, SAS SAEM
- Models Handling overdispersion/underdispersion
- Generalized Poisson (GP)
- Negative binomial (NB)
- Zero-inflated Poisson (ZIP)
Run times for NONMEM and SAS kindly generated
and provided by Plan E. and Maloney A.
24Run times NONMEM, SAS SAEM
- Models Handlng overdispersion/underdispersion
- Generalized Poisson (GP)
- Negative binomial (NB)
- Zero-inflated Poisson (ZIP)
Run times for NONMEM and SAS kindly generated
and provided by Plan E. and Maloney A.
25Fitting simultaneously continuous data and
discrete data
- Warfarin PKPD
- 33 IDs, 479 obs
- PD categorized into 3 categories
Category 1 lt 34 PCA Category 2 34-50
PCA Category 3 gt 50 PCA
3
2
1
26MONOLIX IMPLEMENTATIONcontinuous and ordered
categorical data
- PROBLEM oral 1 (1 cpt with lag-time) and ordered
categorical data - MODEL
- COMP (Qc)
- COMP (Qe)
- PSI Tlag ka V Cl ke0 th1 th2 th3
- PK
- ALAG1Tlag
- KA1 ka
- kCl/V
- ODE
- DDT_Qc -kQc
- DDT_Qe ke0(Qc-Qe)
- CcQc/V
- CeQe/V
27Output
Estimation of the population parameters
parameter s.e. (s.a.) r.s.e.()
Tlag 0.814 0.28
34 ka 1.6 0.54
34 V 7.95 0.33
4 Cl 0.132 0.0067
5 ke0 0.0179 0.001
6 th1 15.8 1.9
12 th2 4.47
0.48 11 th3 5.36
0.75 14 omega2_Tlag 0.514
0.55 107 omega2_ka 0.962
0.69 71 omega2_V
0.0495 0.014 28 omega2_Cl
0.0796 0.021 26 omega2_ke0
0.0239 0.023 98 omega2_th1
9.65 5.5 57 omega2_th2
0 -
- omega2_th3 0 -
- a_1 0.217 0.035
16 b_1 0.065 0.0078
12 Elapsed time is 284 seconds.
28The Hidden Markov model (HMM)
yi,1
yi,2
yi,3
yi,j-1
yi,j
yi,n
zi,1
zi,2
zi,3
zi,j-1
zi,j
zi,n
Pi
Pi
Pi
(zi,j) is a random Markov Chain with transition
matrix
29Mixed Hidden Markov Model
- Random effects on the Poisson parameters -
Random effects on the transition matrices
(P(zjkzjm)
- Methodology
- Maximum likelihood estimation of the population
parameters using SAEM Baum-Welch algorithm - MAP (Maximum a Posteriori) estimation of the
hidden states using the Viterbi algorithm
30The Hidden Markov modelSome individual fits
31The Hidden Markov modelSome individual fits
32(No Transcript)