Efficient Architectures for Elliptic Curve Cryptography Processors for RFID

1 / 22
About This Presentation
Title:

Efficient Architectures for Elliptic Curve Cryptography Processors for RFID

Description:

Elliptic Curves in GF(2m) Simplified Equation: y xy = x3 a'2 x a'6 ... 113 m 251, m prime. w {1, 2, 4, 8, 16 } Synopsys Design Compiler ... –

Number of Views:275
Avg rating:3.0/5.0
Slides: 23
Provided by: nam5184
Category:

less

Transcript and Presenter's Notes

Title: Efficient Architectures for Elliptic Curve Cryptography Processors for RFID


1
Efficient Architectures forElliptic Curve
Cryptography Processorsfor RFID
  • Lawrence Leinweber,
  • Christos Papachristou,
  • and Francis G. Wolff

Dept. of Electrical Engineering and Computer
Science
2
Motivation
  • Promiscuous RFID Tags Communicate Information to
    Any Reader
  • There is a Need for Security and Privacy in RFID
    Tags
  • Smaller, Faster Asymmetric Key Cryptographic
    Processors are Needed for RFID Tags and Other
    Systems

3
Galois Field Math
  • Extension Fields Polynomial Math N0 Carries
  • GF(2m) Even Coefficients 0 Odd Coefficients
    1
  • Reduction x20 x5 (mod x11 x2 1) x9 x5
    x2 1
  • Sparse Polynomials Trinomials and Pentanomials
  • Addition
  • Multiply
  • Easy Squaring
  • Inversion aq-2 ? a-1 (mod f)
  • Fermats Little Theorem aq ? a (mod f), q 2m

4
Elliptic Curves in GF(2m)
  • Simplified Equation y² xy x3 a2 x² a6
  • Group Law, Point Addition 3 collinear points,
    P1, P2, ?P3
  • Additive Inverse ?P ?(x, y) (x, x y)
  • Additive Identity P P 8
  • Point Addition, P3 P1 P2, slope ? (y1 y2)
    / (x1 x2)
  • x3 ?² ? a2 x1 x2, y3 ?(x1 x3)
    y1 x3
  • Point Doubling, if P1 P2, slope ? x1 y1 /
    x1
  • Projective Coordinates P (x, y, z) (x/z,
    y/z)
  • Point Multiplication n Repeated Additions P
    nP1

5
Lopez-Dahab Add Double
  • 6 Multiplies
  • 4 Square
  • 6 Registers R6

6
Modified Lopez-Dahab
  • 7 Multiplies
  • 4 Square
  • 5 Registers R5

7
Registers and Datapaths
  • R5
  • R6

8
High-Level Organization, ALU
9
Galois Field ALU
  • Degree m-1 Polynomial, m-bit Operands
  • Addition Bit-Wise XOR
  • Reduction Wiring and XOR Gates
  • Squaring
  • m 11 Squarer

10
Galois Field Multiplier
  • AND-XOR
  • Bit-Serial vs.Digit-Serial,w bits of 2nd Op
  • Area Time O(mw) O(m/w) O(m2)
  • Simultaneous Multiplication and Reduction
  • Most-Significant-Digit First Better Than
    Least-First

11
Key Control Logic
  • Montgomery Ladder
  • Maintain Pk, Pk1
  • For each key bit
  • If key bit 0,
  • Double P2k 2Pk
  • Add P2k1 Pk Pk1
  • If key bit 1,
  • Add P2k1 Pk Pk1
  • Double P2k2 2Pk1

12
Inversion Control Logic
  • Itoh-Tsujii Algorithm Fermats Little Theorem
  • Define , so

13
Synthesis Results
  • 26 Test Vectors 1 w 16 NIST B-163
  • R6 R5 Designs
  • 113 m 251, m prime
  • w ? 1, 2, 4, 8, 16
  • Synopsys Design Compiler
  • 250 nm TSMC, LEDA, low leakage cells
  • 130 nm low-power IBM, ARM
  • 90 nm high-vt IBM, ARM
  • Area, Delay, Power (16 activity tests)

14
250 nm Area Energy vs. Degree
  • Area (mm)²
  • Energy per Encryption (µJ)

15
130 nm Area Energy vs. Degree
  • Area (mm)²
  • Energy per Encryption (µJ)

16
90 nm Area Energy vs. Degree
  • Area (mm)²
  • Energy per Encryption (µJ)

17
Area (Gate Equiv.) vs. Degree
18
Time (Cycles) vs. Degree
19
Area Time vs. Other Works
  • Area comparison does not include memory devices

20
Other Elliptic Curve Processors
  • 20, 02, Affine, EEA, LSB w1, no Square, no
    Montgomery
  • 21, 03, Affine, EEA, MSB w1, no Square, 13
    Regs
  • 15, 06, 15 Muls, 10 Regs, MSB w1, no Square
  • Projective Operations, Affine Result
  • Lopez-Dahab Formulas, no Inversion
  • 16 06, 6 Muls, 8 Regs, MSD w1, Lopez-Dahab,
    no Inv.
  • 17 07, 8 Muls, 10 Regs, MSD w1, Lopez-Dahab,
    no Inv.
  • 18, 08, 7 Muls, 6 Regs, MSD w1, Lopez-Dahab,
    no Inv.
  • Shared z, Min. Datapaths, Mux Selected Key Bit,
    no Square

21
Registers, Multiplies vs. Others
22
Conclusions
  • R6 Design 6 Regs, 6 Muls By Data Flow Analysis
  • R5 Design 5 Regs, 7 Muls By Modifying Formulas
  • Dedicated Squarer Energy Savings by Resource
    Allocation
  • Muxes Hard-Coded Constants Microcoding Affine
    Result
  • Synthesis Results in Area, Delay and Power
  • Improvements Compared with Other Processors
  • Difficulty with Gate Equivalent Area across
    Technology Scales
Write a Comment
User Comments (0)
About PowerShow.com