Title: Berry Phase and Anomalous Hall Effect
1Berry Phase and Anomalous Hall Effect
- Qian Niu
- University of Texas at Austin
Supported by DOE-NSET NSF-Focused Research
Group NSF-PHY Welch
Foundation
International Center of Quantum Structures
2Outline
- Berry phasean introduction
- Semiclassical transport
- Anomalous Hall effect
- Summary
3Berry Phase
Parameter dependent system
Adiabatic theorem
Geometric phase
4Well defined for a closed path
Stokes theorem
Berry Curvature
5Analogies
Berry curvature Magnetic
field Berry connection Vector
potential Geometric phase
Aharonov-Bohm phase Chern number
Dirac monopole
6Applications
- Berry phase
- interference,
- energy levels,
- polarization in crystals
- Berry curvature
- spin dynamics,
- electron dynamics in Bloch bands
- Chern number
- quantum Hall effect,
- quantum charge pump
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12Hall effect
- Ordinary Hall effect (1879)
- Anomalous Hall effect (18801881)
13AHE in Fe Whisker
Slope R0
RsMs
- P.N. Dheer,
- Phys Rev (1967)
14Magnetic semiconductor
15Early theories
- Karplus Luttinger (1954)
- Intrinsic Hall conductivity
- J. Smit (1958)
- Skew scattering
- L. Berger, (1970)
- Side jump
16Our theory
- velocity
- distribution g( ) f( ) df( )
- current
17Temperature dependence of AHE
J. P. Jan, Helv. Phys. Acta 25, 677 (1952)
18Wien2000LAPW spin density functional
generalized gradient approximationspin-orbit
coupling included in the APW sphere.
Ferromagnetic bcc Fe YuguiYao et al Phys. Rev.
Lett. 92, 037204 (2004)
19Band structure bcc Fe
20Berry curvature
21Berry Curvature in the xz plane
22 Comparison with experiments
Krinchik and Gushchin (1969).
Dheer (1967) 1032 (ohm cm)-1
23Kubo formula
24Transition metals anomalous Hall conductivity
(ohm cm)-1
- Theory
Experiment - bcc iron 750
1030 (a) - hcp cobalt 443 500
(b) - fcc nickel -2100 -753
(c) - (a) P.N. Dheer,Phys.Rev 156, 637 (1967).
- (b) W. Jellinghaus and M. P. De Andres, Ann.
Phys. , 189 (1961). - (c) J. Smit, J. Physica 21, 877 (1955).
25AHE in other systems
- MnxGa1-xAs
- Jungwirth, Niu, MacDonald Phys. Rev. Lett. 88,
207208 (2002) - SrRuO3
- Zhong et at,
- Science 302, 92 (2003).
26Doping dependence Jungwirth et al Appl. Phys.
Lett. 83, 320 (2003).
27AHE in two dimensionsCulcer, MacDonald,
NiuPhys. Rev. B 68 , 045327 (2003).
28Zincblende
n-type HgTe quantum wells X. C. Zhang et al PRB
63, 245305 (2001)
29Summary
- Berry phase
- A unifying concept with many applications
- Bloch electron dynamics in weak fields
- Berry phase around the Brillouin zone
- ------Polarization
- Berry curvature a magnetic field in the k
space. - -----Anomalous Hall effect
- Phase space density of states is modified.
- -----Orbital magnetization, etc.