CISCIGS Solar Cells - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

CISCIGS Solar Cells

Description:

... indium diselenide) CIGS = CuInxGa1-xSe2 (copper indium gallium ... possible short run of indium and gallium resources. Thank you for your attention! sources: ... – PowerPoint PPT presentation

Number of Views:1032
Avg rating:3.0/5.0
Slides: 27
Provided by: SEC1146
Category:
Tags: ciscigs | cells | indium | solar

less

Transcript and Presenter's Notes

Title: CISCIGS Solar Cells


1
CIS/CIGS Solar Cells
2
Motivation
solution solar cells, especially CIS/ CIGS solar
cells
problem global warming and climate change
problem short running oil resources and raising
power demand
http//world.honda.com/environment/2006report/0501
0000_12.jpg http//www.photon-magazine.com/news/ne
ws_2004-0320ap20sn20Honda_big.jpg
http//www.smh.com.au/ffximage/2005/10/07/arctic_w
ideweb__430x308.jpg http//www.elenatour.uz/photo/
uzb/images/Uzbekistan.20Desert20Kizil20Kum.20T
akir.jpg
http//blog.kir.com/archives/oil20and20gas20wel
l20at20sunset3.jpg http//cache.eb.com/eb/image?
id91641rendTypeId4
3
Contents
  • Introduction
  • Material Properties
  • Growth Methods for Thin Films
  • Development of CIGS Thin Film Solar Cells
  • Fabrication Technology
  • Conclusion Prospect

4
Introduction
  • CIS CuInSe2 (copper indium diselenide)
  • CIGS CuInxGa1-xSe2 (copper indium gallium
    diselenide)
  • compound semiconductor ( I-III-VI)
  • heterojunction solar cells
  • high efficiency (19 in small area, 13 in
    large area modules)
  • very good stability in outdoor tests
  • applications
  • solar power plants
  • power supply in aerospace
  • decentralized power supply
  • power supply for portable purposes

http//www.baulinks.de/webplugin/2007/i/0732-wuert
hsolar1.jpg
http//www.copper.org/innovations/2007/05/images/c
ivilian_flex_panel.jpg
http//www.esa.int/images/ISS_2004_web400.jpg
http//www.rgp.ufl.edu/publications/explore/v12n2/
images/thin-film.jpg
5
Contents
  • Introduction
  • Material Properties
  • Phase diagram
  • Impurities Defects
  • Growth Methods for Thin Films
  • Development of CIGS Thin Film Solar Cells
  • Fabrication Technology
  • Conclusion Prospect

6
Material Properties I
  • crystal structure
  • tetragonal chalcopyrite structure
  • derived from cubic zinc blende structure
  • tetrahedrally coordinated
  • direct gap semiconductor
  • band gap 1.04eV 1.68eV
  • exceedingly high adsorptivity
  • adsorption length gt1µm
  • minority-carrier lifetime several ns
  • electron diffusion length few µm
  • electron mobility 1000 cm2 V -1 s-1 (single
    crystal)

Shiyou Chen and X. G. Gong Physical Review B 75,
205209 2007
Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
7
Material Properties II
  • simplified version of the ternary phase diagram
  • reduced to pseudo-binary phase diagram along the
    red dashed line
  • bold black line photovoltaic-quality material
  • 4 relevant phases a-, b-, d-phase and Cu2Se

Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
8
Material Properties III
  • a-phase (CuInSe2)
  • range _at_RT 24-24.5 at
  • optimal range for efficient thin film solar
    cells 22-24 at
  • possible at growth temp. 500-550C, _at_RT phase
    separation into ab
  • b-phase (CuIn3Se5)
  • built by ordered arrays of defect pairs
  • ( áVCu, InCuñ anti sites)
  • d-phase (high-temperature phase)
  • built by disordering Cu In sub-lattice
  • Cu2Se
  • built from chalcopyrite structure by
  • Cu interstitials Cui CuIn anti sites

Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
9
Impurities Defects I
  • problem a-phase highly narrowed _at_RT
  • solution widening a-phase region by impurities
  • partial replacement of In with Ga
  • 20-30 of In replaced
  • Ga/(GaIn) 0.3
  • Þ band gap adjustment
  • incorporation of Na
  • 0.1 at Na by precursors
  • Þ better film morphology
  • Þ passivation of grain-boundaries
  • Þ higher p-type conductivity
  • Þ reduced defect concentration

Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
10
Impurities Defects II
  • doping of CIGS with native defects
  • p-type
  • Cu-poor material, annealed under high Se vapor
    pressure
  • dominant acceptor VCu
  • problem VSe compensating donor
  • n-type
  • Cu-rich material, Se deficiency
  • dominant donor VSe
  • electrical tolerance to large-off stoichiometries
  • nonstoichiometry accommodated in secondary phase
  • off-stoichiometry related defects electronically
    inactive

11
Impurities Defects III
  • electrically neutral nature of structural defects
  • Efdefect complexes lt Efsingle defect
  • Þ formation of defect complexes out of certain
    defects
  • á2VCu, InCuñ, áCuIn, InCuñ and á2Cui, InCuñ
  • no energy levels within the band gap
  • grain-boundaries electronically nearly inactive

12
Contents
  • Introduction
  • Material Properties
  • Growth Methods for Thin Films
  • Coevaporation process
  • Sequential process
  • Roll to roll deposition
  • Development of CIGS Thin Film Solar Cells
  • Fabrication Technology
  • Conclusion Prospect

13
Growth Methods for Thin Films I
  • coevaporation process
  • evaporation of Cu, In, Ga and Se from elemental
    sources
  • precise control of evaporation rate by EIES AAS
    or mass spectrometer
  • required substrate temperature between 300-550C
  • inverted three stage process
  • evaporation of In, Ga, Se
  • deposition of (In,Ga)2Se3
  • on substrate _at_ 300C
  • evaporation of Cu and Se
  • deposition at elevated T
  • evaporation of In, Ga, Se
  • Þ smoother film morphology
  • Þ highest efficiency

Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
14
Growth Methods for Thin Films II
  • sequential process
  • selenization from vapor
  • substrate soda lime glass coated with Mo
  • deposition of Cu and In, Ga films by sputtering
  • selenization under H2Se atmosphere
  • thermal process for conversion into CIGS
  • advantage large-area deposition
  • disadvantage use of toxic gases
    (H2Se)
  • annealing of stacked elemental layers
  • substrate soda lime glass coated with Mo
  • deposition of Cu and In, Ga layers by sputtering
  • deposition of Se layer by evaporation
  • rapid thermal process
  • advantage large-area deposition
  • avoidance of toxic H2Se

Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
15
Growth Methods for Thin Films III
  • roll to roll deposition
  • substrate polyimide/ stainless steel foil coated
    with Mo
  • ion beam supported low temperature deposition of
    Cu, In, Ga Se
  • advantages low cost production method
  • flexible modules and high power
    per weight ratio
  • disadvantages lower efficiency

http//www.solarion.net/images/uebersicht_technolo
gie.jpg
16
Contents
  • Introduction
  • Material Properties
  • Growth Methods for Thin Films
  • Development of CIGS Thin Film Solar Cells
  • Cross section of a CIGS thin film
  • Buffer layer
  • Window layer
  • Band-gap structure
  • Fabrication Technology
  • Conclusion Prospect

17
Development of CIGS Solar Cells I

Zn0 front contact 0.5µm
CdS buffer 50nm
CIGS absorber 1.6 µm
Mo back contact 1µm
soda lime glass substrate 2mm
www.kolloquium-erneuerbare-energien.uni-stuttgart.
de/downloads/Kolloq_2006/Dimmler_EEKolloq-290606.p
df
18
Development of CIGS Solar Cells II
  • Buffer layer CdS
  • deposited by chemical bath deposition (CBD)
  • layer thickness 50 nm
  • properties
  • band gap 2.5 eV
  • high specific resistance
  • n-type conductivity
  • diffusion of Cd 2 into the CIGS-absorber (20nm)
  • formation of CdCu- donors, decrease of
    recombination at CdS/CIGS interface
  • function
  • misfit reduction between CIGS and ZnO layer
  • protection of CIGS layer

Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
19
Development of CIGS Solar Cells III
  • Window layer ZnO
  • band gap 3.3 eV
  • bilayer high- / low-resistivity ZnO deposited by
    RF-sputtering / atomic layer deposition (ALD)
  • resistivity depending on deposition rate
    (RF-sputtering)/flow rate (ALD)
  • high-resistivity layer
  • layer thickness 0.5µm
  • intrinsic conductivity
  • low-resistivity layer
  • highly doped with Al (1020 cm-3)
  • n-type conductivity
  • function
  • transparent front contact

R.Menner, M.Powalla Transparente ZnOAl2O3
Kontaktschichten für CIGS Dünnschichtsolarzellen
20
Development of CIGS Solar Cells IV
  • band gap structure
  • i-ZnO inside space-charge region
  • discontinuities in conduction band structure
  • i-ZnO/CdS 0.4eV
  • CdS/CIGS - 0.4eV 0.3eV
  • depends on concentration of Ga
  • positive space-charge at CdS/CIGS
  • huge band discontinuities of
  • valance-band edge
  • electrons overcome heterojunction
  • exclusively
  • heterojunction nip

Meyer, Thorsten Relaxationsphänomene im
elektrischen Transport von Cu(In,Ga)Se2, 1999.
21
Contents
  • Introduction
  • Material Properties
  • Growth Methods for Thin Films
  • Development of CIGS Thin Film Solar Cells
  • Fabrication Technology
  • Cell processing
  • Module processing
  • Conclusion Prospect

22
Fabrication Technology I
  • cell processing
  • substrate wash 1
  • deposition of metal base electrode
  • patterning 1
  • formation of p-type CIGS absorber
  • monolithical integration
  • during cell processing
  • fabrication of complete modules
  • deposition of buffer layer
  • patterning 2
  • deposition of n-type window layer
  • patterning3
  • deposition Ni/Al collector grid
  • deposition of antireflection coating

Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
23
Fabrication Technology II
  • module processing
  • packaging technology nearly identical to
    crystalline-Si solar cells

Hamakawa, Yoshihiro Thin Film Solar Cells,
Springer, 2004.
24
Contents
  • Introduction
  • Material Properties
  • Growth Methods for Thin Films
  • Development of CIGS Thin Film Solar Cells
  • Fabrication Technology
  • Conclusion Prospect

25
Conclusion Prospects
  • conclusion
  • high reliability
  • high efficiency (19 in small area, 13 in
    large area modules)
  • less consumption of materials and energy
  • monolithical integration
  • high level of automation
  • prospects
  • increasing utilization (solar parks, aerospace
    etc.)
  • optimization of fabrication processes
  • gain in efficiency for large area solar cells
  • possible short run of indium and gallium
    resources

http//img.stern.de/_content/56/28/562815/solar1_5
00.jpg www.kolloquium-erneuerbare-energien.uni-stu
ttgart.de/downloads/Kolloq_2006/Dimmler_EEKolloq-2
90606.pdf
26
  • Thank you for your attention!
  • sources
  • Hamakawa, Yoshihiro Thin Film Solar Cells,
    Springer, 2004.
  • Meyer, Thorsten Relaxationsphänomene im
    elektrischen Transport von Cu(In,Ga)Se2,
    1999.
  • Dimmler, Bernhard CIS-Dünnschicht-Solarzellen
    Vortrag, 2006.
Write a Comment
User Comments (0)
About PowerShow.com