Nanocrystalline Hydroxyapatite - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Nanocrystalline Hydroxyapatite

Description:

Protein matrix containing type 1 collagen and minerals. Calcium as: ... Emulsion processing10. Hydrothermal treatment11. nHA. Chemical precipitation1 ... – PowerPoint PPT presentation

Number of Views:2779
Avg rating:3.0/5.0
Slides: 15
Provided by: Corn164
Category:

less

Transcript and Presenter's Notes

Title: Nanocrystalline Hydroxyapatite


1
Nanocrystalline Hydroxyapatite
Fundamentals of Nanotechnology
  • Cornelia Cretiu Vasiliu
  • 12-01-2007

2
Outline
  • Motivation
  • Methods of synthesis
  • Characterization of structure
  • Morphology and particle size
    distribution

  • Properties
    Applications

3
Why nano-Hydroxyapatite (nHA)
  • Bone 2nd most implanted tissue after blood
  • Protein matrix containing type 1 collagen and
    minerals
  • Calcium as
  • (Ca 2)10-x(H3O)2x(PO
    4)6(OH-)2
  • Synthetic vs. homo-, allo-, xeno-geneic implants
  • Properties biocompatibility,
    biodegradability, mechanical integrity,
    vascularization inductivity, osteoconductivity,
    and osteoinductivity

http//www.uabhealth.org/16313
4
Methods of synthesis
HA Wet methods5 Solid-state
reactions6 Sol-gel7 Ellectrocrystallization8 Spray
pyrolysis9 Emulsion processing10 Hydrothermal
treatment11
nHA Chemical
precipitation1 Hydrothermal treatment12 Microwave
synthesis2
To be considered stoichiometry,
pH, rate of addition, ionic strength
5
nHA Methods of synthesis
  • Co precipitation
    1)
  • Ca(OH)2 H3 PO4 nHA
  • Aqueous, pH 8, 38oC
  • Microwave synthesis 2)
  • 10 Ca(OH)26 (NH4)2HPO4
    Ca10(PO4)6(OH)26H2O12NH4OH
  • 850W, 20 min.
  • 13)Aq. Sol. NaNO3, Ca(NO3)24H2O and KH2PO4
    precursor
  • 600W, 5 min.
  • stirred in H2O ( room temperature , 1 h) nHA
    particles.

6
Structure characterization
  • XRD(1

Powder XRD of the HA precipitate (a)
as-prepared, (b) calcined at 700 C, (c) calcined
at 800 C, (d) calcined at 900 C and (e)
calcined at 1200 C. specific peaks (H) HAP
(b) ß-TCP (a) a-TCP.( 1
7
Structure characterization (2)
  • IR(1 spectra of the nHA precipitates
  • (a) as-dried,
  • (b) calcined at 700 C,
  • (c) calcined at 800 C,
  • (d) calcined at 900 C and
  • (e) calcined at 1200 C.

8
Particles morphology
SEM micrograph of the as-prepared nHA(1
TEM micrograph of as-synthesized nano HA
crystals(14
9
Particle size distribution
  • DLS Histogram representation of the mean
    diameters of as-prepared nHA suspended in aqueous
    solution. (1

10
Applications
Coatings
  • Cell morphology after being cultured for 15 min
    on the different nHA coated(G2) and uncoated(G1H)
    titanium surfaces.
  • Surface roughness decreased(2

(2
Fibers, tubes
  • nHA doped PLGA composite (30 nHA) hollow fiber
    membrane fabricated using wet phase inversion
    technique (13

(13
11
Applications
  • Bone filler(4
  • Preoperative axial CT
  • (B) Lateral preoperative view
  • (C) After reduction, the remaining defect was
    filled with nHA paste.
  • (D) Postoperative radiograph
  • (E) 6 weeks after surgery . The patient
    progressed to full weight bearing at this point
    in time.
  • (F) 12 months postoperatively, only a marginal
    loss of correction could be measured.

12
Future developments
CT scan
Computer file
Choose customized design
Print, sinter implant
Seed cells, growth factors
Implant
13
References
  1. http//www.sciencedirect.com/science/article/B6THV
    -4JVK567-1/2/501b2d84c7d81d8e9dc5771941065db1
    Phase
  2. Xiaolong Zhu et al 2006 Nanotechnology 17
    2711-2721  
  3. http//www.sciencedirect.com/science/article/B6TWH
    -4KY88TT-3/2/2a01537a8d0b528852bb67f079d7e91a
    Rapid densification
  4. F. Huber, J. Hillmeier, N. McArthur, H. Kock and
    P. J. Meeder, The Use of Nanocrystalline
    Hydroxyapatite for the Reconstruction of
    Calcaneal Fractures Preliminary Results, J. of
    Foot and Ankle Surgery Vol. 45/ 5, 2006, pp.
    322-328.
  5. C. Liu, Y. Huang, W. Shen and J. Cui,
    Biomaterials 22 (2001), pp. 301306.
  6. X. Yang and Z. Wang, J. Mater. Chem. 8 (1998),
    pp. 22332237
  7. W. Feng, L. Mu-sen, L. Yu-peng and Q. Yong-xin,
    Mater. Lett. 59 (2005), pp. 916919
  8. S.K. Yen and C.M. Lin, Mater. Chem. Phys. 77
    (2003), pp. 7076.
  9. K. Itatani, T. Nishioka, S. Seike, F.S. Howell,
    A. Kishioka and M. Kinoshita, J. Am. Ceram. Soc.
    77 (1994), pp. 801805
  10. C.-W. Chen, R.E. Riman, K.S. TenHuisen and K.
    Brown, J. Cryst. Growth 270 (2004), pp. 615623
  11. G.Z. Hui, Z. Qingshan and H.X. Zhao, Mater. Res.
    Bull. 40 (2005) (8), pp. 13261334.
  12. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman,
    V.F. Janas and K.S. TenHuisen, J. Solid State
    Chem. 177 (2004), pp. 793799
  13. N. Zhang et al. / Materials Science and
    Engineering C 27 (2007) 599606
  14. S. Ramesh et al. / Ceramics International 33
    (2007) 13631367

14
Questions?
HAßTCP 6040 1100oC/4h
HAßTCP 6040 1270oC/4h
Write a Comment
User Comments (0)
About PowerShow.com