Study on the high brilliance operation mode of HLS - PowerPoint PPT Presentation

1 / 83
About This Presentation
Title:

Study on the high brilliance operation mode of HLS

Description:

Study on the high brilliance operation mode of HLS Student: He Zhang Major: Nuclear technology and application Supervisor: Duohui He, Professor – PowerPoint PPT presentation

Number of Views:88
Avg rating:3.0/5.0
Slides: 84
Provided by: msue46
Learn more at: https://msu.edu
Category:

less

Transcript and Presenter's Notes

Title: Study on the high brilliance operation mode of HLS


1
Study on the high brilliance operation mode of HLS
  • Student He Zhang
  • Major Nuclear technology and
    application
  • Supervisor Duohui He, Professor
  • Lin Wang, Associate
    Professor

2
  • Introduction of HLS and the principles of high
    brilliance mode lattice design
  • Design of HLS high brilliance mode
  • The effects of ID in high brilliance mode

3
Introduction of HLS and the principles of high
brilliance mode lattice design
4
  1. Introduction of HLS

5
  • General Purpose Light Source(GPLS)Lattice
  • Quadruple strength
  • coefficient K
  • Q1 K1 1.5692
  • Q2 K1-0.9557
  • Q3 K1-2.2671
  • Q4 K1 3.0708
  • Q5 K1 3.0708
  • Q6 K1 -2.2671
  • Q7 K1 -0.9557
  • Q8 K1 1.5692
  • Tunes
  • ?x 3.58
  • ?y 2.58
  • Emittance
  • Emit 166 nmrad

6
The old High Brilliance Light Scource (HBLS)
  • Quadruple strength
  • coefficient K
  • Q1 K1 2.494447
  • Q2 K1-2.526518
  • Q3 K1 3.820103
  • Q4 K1-0.747670
  • Q5 K1-3.107723
  • Q6 K1 4.821645
  • Q7 K1 4.633252
  • Q8 K1-2.765640
  • Tunes
  • ?x 5.8213
  • ?y 2.3254
  • Emittance
  • Emit 26.87 nmrad

7
  • Tunes on the super periodic structure
  • resonance graph
  • Change of ßfunction VS. change of K

8
Characters of HBLS and the design purpose of new
lattices
  • HBLS
  • New Lattices

9
HLS new high brilliance lattice design
10
Searching for 4-folded lattices with achromatic
straight sections
  • Limits of 4 folded lattices with achromatic
    straight sections

11
  • K of Q3 VS. K of Q4
  • Emittance e VS. K of Q3

12
  • ßx changes between 15m,35m, ßy changes between
    3m,9m ,distribution
  • of Ks of Q3 in all periodic solutions

13
  • conclutions

14
New 2-folded lattice design
  • 2 folded Lattice L2
  • Qudruple strength
  • coefficient K
  • Q1 K1 2.5808
  • Q2 K1-2.2038
  • Q3 K1 3.9596
  • Q4 K1-2.1481
  • Q5 K1 2.7563
  • Q6 K1 0
  • Q7 K1-2.7457
  • Q8 K1 2.3722
  • Tunes
  • ?x 4.449
  • ?y 2.425
  • Emittance
  • Emit 55.94 nmrad

15
  • Tunes of L2
  • Super periodic structure
  • resonance graph
  • Change of ßVS. Change of K

16
  • Change of tunes VS.
  • momentum dispersion
  • Change of tunes VS. initial
  • horizontal position
  • Change of tunes VS. initial
  • vertical position

17
  • Dynamic aperture of L2

18
  • FMA

19
  • Position of correctors and BPMs

20
Error amplifier of L2
21
  • Simulation results of close orbit distortion
    correction of L2

22
  • Simulation results of close orbit distortion
    correction of L2

23
  • Simulation results of close orbit distortion
    correction of L2

24
  • An example of close orbit distortion correction
    of L2
  • An example of close orbit distortion correction
    of L2

25
  • An example of close orbit distortion correction
    of L2

26
  • Dynamic aperture of L2 with errors
  • Brilliance at the midpoints of dipoles

27
New 4-folded lattice design with chromatic
straight sections
  • New 4-folded lattice design with chromatic
    straight sections

L1 L2 L3
Q1 (/m2) 2.7496 2.6790 2.6148
Q2 (/m2) -2.8876 -2.7968 -2.7004
Q3 (/m2) 3.7620 4.0591 4.2914
Q4 (/m2) -1.1581 -1.5225 -1.7782
Emittance (nmrad) 42.33 25.71 16.15
Tunes (5.197, 2.528) (5.205, 2.545) (5.207, 2.535)
Momentum compacter 0.0205 0.0168 0.0134
Nature chromaticity (-13.53, -11,80) (-16.02, -8.65) (-18.32, -6.98)
28
  • ß function and ? function of new 4-folded lattice

29
  • Tunes

30
  • Super periodic structure resonance graph

31
  • Change of ßVS. Change of K

32
  • Change of tunes VS. change of momentum
  • dispersion (L4-3)

-0.18 lt dp/p lt 0.22
33
  • L4-3 Change of tunes VS. initial position

34
  • Dynamic aperture of L4-3

35
  • FMA

36
  • Error amplifier of L4-3

37
  • Simulation of close orbit distortion correction
    of L4-3

38
  • Simulation of close orbit distortion correction
    of L4-3

39
  • Simulation of close orbit distortion correction
    of L4-3

40
  • An example of close orbit distortion correction
    of L4-3

41
  • An example of close orbit distortion correction
    of L4-3

42
  • Dynamic aperture with errors of L4-3
  • Brilliance at the midpoint of dipoles (L4-3)

43
  • Commissioning (2005.10.1-2005.10.7)
  • Lattice of commissioning
  • ßfunction

Maximal injection beam curent is 13.3mA, after
ramping 7.4mA remains?
44
  • Possible reasons why beam current cant
    accumulate in injection progress

45
  • Conclusions

46
  • Beam lifetime of L4-3

47
  • Beam lifetime of L4-3

Physical acceptanceHx22.2mm-mrad, Hy44.3mm-mrad
48
  • ??L4-3?????
  • Lifetime VS. physical acceptance
  • Lifetime VS. gas pressure

49
  • Beam lifetime of L4-3
  • Lifetime VS. gas pressure
  • Lifetime VS. momentum acceptance

50
  • Beam lifetime of L4-3
  • Lifetime VS. gas pressure

51
  • Beam lifetime of L4-3
  • Touschek lifetime at different position

52
  • Beam lifetime of L4-3
  • Lifetime VS. momentum acceptance
  • Lifetime VS. RF Voltage

53
  • Beam lifetime of L4-3
  • Lifetime VS. coupling rate
  • Lifetime VS. beam bunch length

54
  • Beam lifetime of L4-3

Lifetime VS. beam current
55
  • Conclusions

56
Effects of Insertion Devices
57
  • The undulator in HLS
  • Magnetic field of the undulator
  • The undulators design parameters

58
  • Fiting of the undulators magnetic field

59
  • Fitting result of the periodic magnetic field
  • Fitting result of the fringe magnetic field

60
  • Linear effect of the undulator
  • 4-D transfer matrix of the undulator

61
  • Change of tunes
  • Change of ßfunction

62
  • Change of close orbit

63
  • Change of dynamic aperture

64
  • Nonlinear effects of the undulator
  • Symplectic integration
  • Generating function method

The second kind of GF
Relations of pxi, pyi, qxf, qyf
Get the parameters by least-squares procedure
65
  • Tracking result of SI and GF

66
  • Tracking result of SI and GF

67
  • Tracking result of SI and GF

68
  • Tracking result of SI and GF

69
  • FMA

70
  • Effects on storage ring parameters of the
    undulator

Energy loss in the undulator per turn
Change of emittance and energy spread
71
  • The super conducting wiggler in HLS
  • Magnetic field in the mid plane of the wiggler

72
  • Hard edge model of the wiggler

73
  • Linear effect of the wiggler
  • Change of ßfunction
  • Change of tunes

74
  • Local compensation
  • Change of ß function after compensation
  • Change of tunes after compensation

75
  • Global compensation
  • Change of ßfunction after global compensation
  • Change of tunes after global compensation

76
  • Global compensation
  • Change of dynamic aperture after global
    compensation

77
  • Global compensation
  • Change of storage ring parameters after global
    compensation

78
  • Conclusions

79
Conclusions and future work
80
  • Conclusions

81
  • Future work

82
Acknowledgements
????????????????????????????????????????,?????????
???????????????????????????????????,??????????????
??????????,?????????????????,??????,??????????????
?????????????????????????????????????????????????
??????????????????,????????? ?????????????????????
??,?????????????????lattice??????????????????? ???
??????????????????????????????????????????????????
????????????????????? ????????????????????????????
????????????????????????????????????? ????????????
??????????????????????????? ??????????????????????
?????????????? ??????,???????????????????,????????
?????,????????????
83
  • THANKS!
Write a Comment
User Comments (0)
About PowerShow.com