Title: Study on the high brilliance operation mode of HLS
1Study on the high brilliance operation mode of HLS
- Student He Zhang
- Major Nuclear technology and
application - Supervisor Duohui He, Professor
- Lin Wang, Associate
Professor
2- Introduction of HLS and the principles of high
brilliance mode lattice design - Design of HLS high brilliance mode
- The effects of ID in high brilliance mode
3Introduction of HLS and the principles of high
brilliance mode lattice design
4- Introduction of HLS
5- General Purpose Light Source(GPLS)Lattice
- Quadruple strength
- coefficient K
- Q1 K1 1.5692
- Q2 K1-0.9557
- Q3 K1-2.2671
- Q4 K1 3.0708
- Q5 K1 3.0708
- Q6 K1 -2.2671
- Q7 K1 -0.9557
- Q8 K1 1.5692
- Tunes
- ?x 3.58
- ?y 2.58
- Emittance
- Emit 166 nmrad
-
6The old High Brilliance Light Scource (HBLS)
- Quadruple strength
- coefficient K
- Q1 K1 2.494447
- Q2 K1-2.526518
- Q3 K1 3.820103
- Q4 K1-0.747670
- Q5 K1-3.107723
- Q6 K1 4.821645
- Q7 K1 4.633252
- Q8 K1-2.765640
- Tunes
- ?x 5.8213
- ?y 2.3254
- Emittance
- Emit 26.87 nmrad
-
7- Tunes on the super periodic structure
- resonance graph
- Change of ßfunction VS. change of K
8Characters of HBLS and the design purpose of new
lattices
9HLS new high brilliance lattice design
10Searching for 4-folded lattices with achromatic
straight sections
- Limits of 4 folded lattices with achromatic
straight sections
11 12- ßx changes between 15m,35m, ßy changes between
3m,9m ,distribution - of Ks of Q3 in all periodic solutions
13 14New 2-folded lattice design
- Qudruple strength
- coefficient K
- Q1 K1 2.5808
- Q2 K1-2.2038
- Q3 K1 3.9596
- Q4 K1-2.1481
- Q5 K1 2.7563
- Q6 K1 0
- Q7 K1-2.7457
- Q8 K1 2.3722
- Tunes
- ?x 4.449
- ?y 2.425
- Emittance
- Emit 55.94 nmrad
-
15- Super periodic structure
- resonance graph
- Change of ßVS. Change of K
16- Change of tunes VS.
- momentum dispersion
- Change of tunes VS. initial
- horizontal position
- Change of tunes VS. initial
- vertical position
17 18 19- Position of correctors and BPMs
20Error amplifier of L2
21- Simulation results of close orbit distortion
correction of L2
22- Simulation results of close orbit distortion
correction of L2
23- Simulation results of close orbit distortion
correction of L2
24- An example of close orbit distortion correction
of L2
- An example of close orbit distortion correction
of L2
25- An example of close orbit distortion correction
of L2
26- Dynamic aperture of L2 with errors
- Brilliance at the midpoints of dipoles
27New 4-folded lattice design with chromatic
straight sections
- New 4-folded lattice design with chromatic
straight sections
L1 L2 L3
Q1 (/m2) 2.7496 2.6790 2.6148
Q2 (/m2) -2.8876 -2.7968 -2.7004
Q3 (/m2) 3.7620 4.0591 4.2914
Q4 (/m2) -1.1581 -1.5225 -1.7782
Emittance (nmrad) 42.33 25.71 16.15
Tunes (5.197, 2.528) (5.205, 2.545) (5.207, 2.535)
Momentum compacter 0.0205 0.0168 0.0134
Nature chromaticity (-13.53, -11,80) (-16.02, -8.65) (-18.32, -6.98)
28- ß function and ? function of new 4-folded lattice
29 30- Super periodic structure resonance graph
31- Change of ßVS. Change of K
32- Change of tunes VS. change of momentum
- dispersion (L4-3)
-0.18 lt dp/p lt 0.22
33- L4-3 Change of tunes VS. initial position
34 35 36 37- Simulation of close orbit distortion correction
of L4-3
38- Simulation of close orbit distortion correction
of L4-3
39- Simulation of close orbit distortion correction
of L4-3
40- An example of close orbit distortion correction
of L4-3
41- An example of close orbit distortion correction
of L4-3
42- Dynamic aperture with errors of L4-3
- Brilliance at the midpoint of dipoles (L4-3)
43- Commissioning (2005.10.1-2005.10.7)
Maximal injection beam curent is 13.3mA, after
ramping 7.4mA remains?
44- Possible reasons why beam current cant
accumulate in injection progress
45 46 47Physical acceptanceHx22.2mm-mrad, Hy44.3mm-mrad
48- Lifetime VS. physical acceptance
- Lifetime VS. gas pressure
49- Lifetime VS. gas pressure
- Lifetime VS. momentum acceptance
50- Lifetime VS. gas pressure
51- Touschek lifetime at different position
52- Lifetime VS. momentum acceptance
53- Lifetime VS. coupling rate
- Lifetime VS. beam bunch length
54Lifetime VS. beam current
55 56Effects of Insertion Devices
57- Magnetic field of the undulator
- The undulators design parameters
58- Fiting of the undulators magnetic field
59- Fitting result of the periodic magnetic field
- Fitting result of the fringe magnetic field
60- Linear effect of the undulator
- 4-D transfer matrix of the undulator
61 62 63- Change of dynamic aperture
64- Nonlinear effects of the undulator
- Generating function method
The second kind of GF
Relations of pxi, pyi, qxf, qyf
Get the parameters by least-squares procedure
65- Tracking result of SI and GF
66- Tracking result of SI and GF
67- Tracking result of SI and GF
68- Tracking result of SI and GF
69 70- Effects on storage ring parameters of the
undulator
Energy loss in the undulator per turn
Change of emittance and energy spread
71- The super conducting wiggler in HLS
- Magnetic field in the mid plane of the wiggler
72- Hard edge model of the wiggler
73- Linear effect of the wiggler
74- Change of ß function after compensation
- Change of tunes after compensation
75- Change of ßfunction after global compensation
- Change of tunes after global compensation
76- Change of dynamic aperture after global
compensation
77- Change of storage ring parameters after global
compensation
78 79Conclusions and future work
80 81 82Acknowledgements
????????????????????????????????????????,?????????
???????????????????????????????????,??????????????
??????????,?????????????????,??????,??????????????
?????????????????????????????????????????????????
??????????????????,????????? ?????????????????????
??,?????????????????lattice??????????????????? ???
??????????????????????????????????????????????????
????????????????????? ????????????????????????????
????????????????????????????????????? ????????????
??????????????????????????? ??????????????????????
?????????????? ??????,???????????????????,????????
?????,????????????
83