Logical Form and Logical Equivalence - PowerPoint PPT Presentation

About This Presentation
Title:

Logical Form and Logical Equivalence

Description:

Tautologies and Contradictions A tautology is a statement form that is always true regardless of the values of the ... M260 Discrete Mathematics Author: patrick ... – PowerPoint PPT presentation

Number of Views:193
Avg rating:3.0/5.0
Slides: 38
Provided by: patrick767
Category:

less

Transcript and Presenter's Notes

Title: Logical Form and Logical Equivalence


1
Logical Form and Logical Equivalence
  • M260 2.1

2
Logical Form Example 1
  • If the syntax is faultyor execution results in
    division by zero,then the program will generate
    an error message.
  • Thereforeif the computer does not generate an
    error messagethen the syntax is correctand the
    execution does not result in division by zero.

3
Logical Form Example 2
  • If x is a Real number such that xlt-2 or xgt2,then
    x2gt4.
  • Thereforeif x2?4,then x?-2 and x?2.

4
Logical Form Example 1
  • If (the syntax is faulty)or (execution results
    in division by zero),then (the program will
    generate an error message).
  • Thereforeif (the computer does not generate an
    error message)then (the syntax is correct)and
    (the execution does not result in division by
    zero).

5
Logical Form Example 1
  • If (p)or (q),then (r).
  • Thereforeif (not r)then (not p)and (not q).

6
Logical Form Example 2
  • If (xlt-2) or (xgt2),then (x2gt4).
  • Thereforeif (x2?4),then (x?-2) and (x?2).

7
Logical Form Example 2
  • If (p) or (q),then (r).
  • Thereforeif (not r),then (not p) and (not q).

8
Logical Form vs Content
  • Examples 1 and 2 have the same formIf p or q,
    then r.therefore if not r, then not p and not q.
  • These examples have different values for the
    propositional variables p and q.

9
Formal Logic Goals
  • Avoid Ambiguity
  • Obtain Consistency
  • Elucidate Proof Mechanisms

10
Mathematical Vocabulary
  • New terms are defined using previously defined
    terms.
  • Initial terms remain undefined.
  • Undefined terms in logic sentence, true, false.

11
Logic Symbols ? ?
  • denotes not
  • Negation of p is p.

12
Logic Symbols ? ?
  • ? denotes and
  • Conjunction of p and q is p ? q.
  • ? denotes or
  • Disjunction of p and q is p ? q.
  • Precedence first then ? and ? (unordered)

13
Truth Values
  • True
  • False

14
Precedence Examples
  • p ? q
  • p ? q
  • (p ? q)

15
Let p, q and r be 0ltx, xlt3, and x3
  • Rewrite x ?3
  • q ? r
  • Rewrite 0ltxlt3
  • p?q
  • Rewrite 0ltx?3
  • p?(q ? r)

16
Negation Truth Table
p p
T F
F T
17
Conjunction Truth Table
p q p?q
T T T
T F F
F T F
F F F
18
Disjunction Truth Table
p q p ? q
T T T
T F T
F T T
F F F
19
Statement Form
  • Statement variables
  • Logical connectives
  • Truth table

20
Exclusive Or
  • p or q but not both
  • (p ? q) ? (p ? q)
  • Do a truth table

21
Exclusive Or Truth Table
p q p ? q p ? q (p ? q) (p ? q) ? (p ? q)




22
Exclusive Or Truth Table
p q p ? q p ? q (p ? q) (p ? q) ? (p ? q)
T T
T F
F T
F F
23
Exclusive Or Truth Table
p q p ? q p ? q (p ? q) (p ? q) ? (p ? q)
T T T T F
T F T F T
F T T F T
F F F F T
24
Exclusive Or Truth Table
p q p ? q p ? q (p ? q) (p ? q) ? (p ? q)
T T T T F F
T F T F T T
F T T F T T
F F F F T F
25
Logical Equivalence
  • Statement Forms are logically equivalent if, and
    only if, they have the same truth tables.
  • P ? Q

26
Logical Equivalence Examples
  • 6gt2 2lt6
  • p ? q q ? p
  • p (p)

27
De Morgans Laws
  • (p ? q) ? p ? q
  • (p ? q) ? p ? q
  • Do truth tables

28
(p ? q) ? p ? q
p q p q p ? q (p ? q) p ? q




29
(p ? q) ? p ? q
p q p q p ? q (p ? q) p ? q
T T
T F
F T
F F
30
(p ? q) ? p ? q
p q p q p ? q (p ? q) p ? q
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T
31
Practice Negations
  • John is six feet tall and weighs at least 200
    pounds.
  • John is not six feet tall or he weighs less than
    200 pounds.

32
Practice Negations
  • The bus was late or Toms watch was slow.
  • The bus was not late and Toms watch was not
    slow.

33
Jim is tall and thin.
  • Logical And and Or are only allowed between
    statements.

34
Tautologies and Contradictions
  • A tautology is a statement form that is always
    true regardless of the values of the statement
    variables.
  • A contradiction is a statement form that is
    always false regardless of the values of the
    statement variables

35
Logically Equivalent Forms
  • Commutative laws
  • Associative laws
  • Distributive laws
  • Identity laws
  • Negation laws
  • Double negative law
  • Idempotent laws
  • De Morgans laws
  • Universal bound laws
  • Absorption laws
  • Negations of tautologies and contradictions

36
Logical Equivalences
  • p?q ?_________ p?q ? ________
  • (p?q)?r ?_______ (p?q)?r ?_______ 
  • p?(q?r) ? ______ p?(q?r) ? _______
  • p?t ?__________ p?c ? __________
  • p?p ? _________ p?p ? _________
  • (p) ? ________
  • p?p ? __________ p?p ? __________
  • (p?q ) ? _______ (p?q ) ? _______
  • p?t ? __________ p?c ? __________
  • p?(p?q) ? ______ p?(p?q) ? ______
  • t ? ___________ c ? ___________

37
Logical Equivalences
  • p?q ? q?p p?q ? q?p
  • (p?q)?r ? p?(q?r) (p?q)?r ? p?(q?r)  
  • p?(q?r) ? (p?q)? (p? r)
  • p?(q?r) ? (p?q)? (p? r)
  • p?t ?p p?c ? p
  • p?p ? t p?p ? c
  • (p) ? p
  • p?p ? p p?p ? p
  • (p?q ) ? p?q (p?q ) ? p?q
  • p?t ? t p?c ? c
  • p?(p?q) ? p p?(p?q) ? p
  • t ? c c ? t
Write a Comment
User Comments (0)
About PowerShow.com