Viewing geometry - PowerPoint PPT Presentation

About This Presentation
Title:

Viewing geometry

Description:

Reflectance functions Representing surface orientation using stereographic projection Reflectance Map R(f,g) ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 10
Provided by: RandyS166
Learn more at: https://cs.wellesley.edu
Category:

less

Transcript and Presenter's Notes

Title: Viewing geometry


1
Viewing geometry
What fraction of the incident light is reflected
toward the viewer?
radiance
irradiance
Reflectance Function F(i,e,g)
surface radiance surface irradiance
2
Reflectance functions
Fmirror(i,e,g) 1 if i e i e g
0 otherwise
Fmatte(i,e,g) ? cos i if i lt 90 0
otherwise ? albedo
3
Representing surface orientation using
stereographic projection
sphere has radius 1
g
f
(f,g) (0, 2)
(f,g) (2, 0)
viewer
4
Reflectance Map R(f,g)
Given (1) light source (2) viewer position (3)
surface reflectance properties
R(f,g) relates brightness to surface orientation
Image Irradiance Equation I(x,y) I0 ?(x,y)
R(f,g)
5
Ikeuchi Horn shape-from-shading algorithm
  • Three sources of constraint
  • (1) image intensity I(x,y)
  • (2) surface smoothness
  • e.g. minimize total variation in surface
  • (3) points of known surface orientation
  • e.g. occluding boundaries, shadow boundaries

(known viewer direction, light source direction,
surface reflectance properties)
I(x,y) I0 ?(x,y) R(f,g)
6
Simplified Ikeuchi Horn algorithm
  • Construct initial solution with f g 0
    everywhere, except at points of known surface
    orientation (e.g. occluding boundary)
  • Let fi(x,y) gi(x,y) denote surface
    orientations at iteration i
  • To determine fi1(x,y) gi1(x,y)
  • For each location (x,y)
  • (1) Compute the average value of fi(x,y) in a
    neighborhood around (x,y) f
  • (2) Compute the average value of gi(x,y) in a
    neighborhood around (x,y) g
  • (3) Find the contour of possible f and g values
    in R(f,g) that are consistent with I(x,y)
  • (4) Find the point on this contour that is
    closest to the surface orientation given
    by (f,g) the coordinates of this point
    represent the new surface orientation for
    location (x,y) fi1(x,y) gi1(x,y)

7
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0
0 0 0 0 0.2 0.4 0.4 0.3 0.2 0.1 0 0
0 0 0 0.2 0.3 0.5 0.7 0.6 0.3 0.2 0.1 0
0 0 0 0.2 0.3 0.6 0.8 0.9 0.6 0.2 0.2 0
0 0 0 0.3 0.4 0.7 0.9 1.0 0.8 0.5 0.3 0
0 0 0 0.3 0.4 0.7 0.9 1.0 0.8 0.5 0.3 0
0 0 0 0.2 0.3 0.6 0.8 0.9 0.6 0.2 0.2 0
0 0 0 0.2 0.3 0.5 0.7 0.6 0.3 0.2 0.1 0
0 0 0 0 0.2 0.4 0.4 0.3 0.2 0.1 0 0
0 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
image of shaded sphere
8
(0,0) (0.0) (0,0) (0,0) (0,0) (0,2) (0,2) (,) (0,0) (0,0) (0,0) (0,0)
(0,0) (0,0) (0,0) (0,0) (,) (0,0) (0,0) (0,0) (,) (0,0) (0,0) (0,0)
(0,0) (0,0) (0,0) (,) (0,0) (0,0) (0,0) (0,0) (0,0) (,) (0,0) (0,0)
(0,0) (0,0) (0,0) (,) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (,) (0,0)
(0,0) (0,0) (,) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (,)
(0,0) (0,0) (,) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (2,0)
(0,0) (0,0) (,) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (2,0)
(0,0) (0,0) (,) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (,)
(0,0) (0,0) (0,0) (,) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (,) (0,0)
(0,0) (0,0) (0,0) (,) (0,0) (0,0) (0,0) (0,0) (0,0) (,) (0,0) (0,0)
(0,0) (0,0) (0,0) (0,0) (,) (0,0) (0,0) (0,0) (,) (0,0) (0,0) (0,0)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,-2) (0,-2) (,) (0,0) (0,0) (0,0) (0,0)
surface orientation (f,g) initial state
9
Koenderink colleagues
Subjects qualitative impressions of shape were
consistent, but subjects differed quantitatively
in amount of depth perceived Analysis is not
strictly local global factors play a role
Write a Comment
User Comments (0)
About PowerShow.com