Title: ??430 ??f?a?e? ?p????????e? ?a??
1??430 ??f?a?e? ?p????????e??a??µa 2
- ?e?????? Te???a? ???a??t?t??
2Sp??da??t?ta t?? st??ast???? d?ad??as???
- ?? t??a?e? d?ad??as?e? ?a? µetaß??te? µa?
ep?t?ep??? ?a ?e?????µaste p?s?t?te? ?a? s?µata
p?? de? ta ?e???µe e? t?? p??te??? - ?a ded?µe?a ?a? ta s?µata p?? µetad?d??ta? µesa
ap? ta t??ep????????a?a s?st?µata ?e?????ta?
t??a?a. - ? ????ß??, ?? pa?eµß??e?, ?? pa?aµ??f?se?? ?a? ??
d?a?e??e?? (fading) p?? e?sa???ta? ap? t? ?a?a??
ep?s?? p??s?µ??????ta? µe st??ast??e?
d?ad??as?e?. - ???µa ?a? t? ???t???? a???p?st?a? µetad?s?? (BER-
Bit Error Rate ? p??a??t?ta sfa?µat?? bit)
e?f?a?eta? µe p??a??-?e???t????? ?????
3???a?a ?e????ta
- ?ta? e?te???µe e?a t??a?? pe??aµa, µp????µe ?a
???s?µ?p???-s??µe s?µß??a t?? ?e???a? s?????? ??a
?a pe????a???µe ta d??ata ap?te?esµata. - ?a?ade??µa ??????µe e?a ?a??.
- ???ata ap?te?esµata S 1,2,3,4,5,6
- Ge????? e??a? ?a?e ?p?s????? d??at??
ap?te?esµat?? ?1,2 - S?µp????µat??? ?e????? t?? ? e??a? t? S A
3,4,5,6 - ?? s????? ???? t?? ap?te?esµat?? e??a? t? s??????
?e????? S - ? ? ????? ap?te?esµ?t?? ? ? ????? de??µat??
- ?? ?e?? ?e????? e??a? t? ?
- ? µetad?s? e??? bit, p.?., e??a? e?a t??a??
pe??aµa
4???a??t?ta
- ? p??a??t?ta P(A) e??a? e?a? a???µ?? ? ?p????
µet?a t?? p??a??fa?e?a t?? ?e????t?? ?. - St?? ???? de??µat?? S1,2,3,4,5,6 t??
p??????µe??? pa?ade??µat?? a? ?1,2 t?te ?(?)
1/3 ?a? - ?(a?t?? ap?te?esµa)1/2
- ????µata t?? ?e???a? p??a??t?t??
- ??de? ?e????? e?e? a???t??? p??a??t?ta P(A)?0
- P(A)?1 ?a? P(A) 1 ? A S.
- ?? ? ?a? ? e??a? d?? ?e?a ?e????ta d??. a?
???? - t?te P(A ? B) P(A) P(B).
- O?e? ?? a??e? ?d??t?te? t?? p??a??t?t?? e??a?
ap?????a a?t?? t?? a???µat??
5??a??aµµata Venn
6S?ese?? µeta?? t??a??? ?e????t??
- ? ap? ?????? p??a??t?ta t?? ? ?a? ? e??a? ?
p??a??t?ta ?a s?µß??? ?a? ta d?? ?e????ta
P(A,B) P(A ? B) - ?p? s?????? p??a??t?ta P(AB) P(A,B) / P(B)
- ???a? ? p??a??t?ta ?t? ?a s?µße?
t? ? ded?µe??? ?t? s???ß? t? ? - ?ts? P(A,B) P(A)P(B)
P(??)P(?) - Stat?st??? a?e?a?t?s?a
- ?a ?e????ta ? ?a? ? e??a? stat?st??a a?e?a?t?ta
a? - P(A,B) P(A) P(B)
- ?? ta ? ?a? ? e??a? a?e?a?t?ta t?te
- P(AB) P(A) ?a? P(BA) P(B)
- ?a?ade??µa ?a ap?te?esµata t?? ????? d?? ?a????
? ta ap?te?esµata t?? ????? t?? ?d??? ?a????
d?? f??e? (e?t?? a? e??a? pe??a?µe??)
7?a?ade??µa stat?st???? e?a?t?s??
- ?st? S o ????? ap?te?esµat?? t?? pe??aµat?? ?????
t?? ?a????. Te??e?ste ta ?e????ta ?3 ?a?
?1,2,3,6 - ?(?)1/3 ?a? ?(?)4/62/3
- ?(??) 1/4 ?(?,?)/?(?) ?(?,?)/(2/3) ?
- ? ?(?,?) (1/4)(2/3) 1/6
- ?p?te ?(?)?(?) (1/3)(2/3) 2/9 ? 1/6
?(?,?) - ???ad? ta ?e????ta ? ?a? ? e??a? e?a?t?µe?a
- ??s? e??a? ? ?(??) ??
- ?? e?a?t?s? e???? ta ?e????ta G4 ?a? ? ?
81? ?a?ade??µa stat?st???? a?e?a?t?s?a?
- Te??e?ste t?? ???? O p?? ap?te?e?ta? ap? ta 52
ap?te?esµata t?? t??a??? pe??aµat?? p?? e??a? ?
ep????? e??? f????? µ?a? t?ap???a? . - ?a ?e????ta ?ep????? ?taµa? ?a? ?ep?????
???????? f????? e??a? a?e?a?t?ta d??t? - ?(?)4/521/13, ?(?) 26/521/2
- ?(?,?) ?(ep????? ???????? ?taµa?) 2/52 1/26
- ?p?te ?(?,?) ?(?)?(?)
- ?p?s?? ?(??)2/261/13?(?), ?a?
?(??)2/41/2?(?)
92? ?a?ade??µa stat?st???? a?e?a?t?s?a?
- St?? ???? S 1,2,3,4,5,6 t?? ap?te?esµat?? t??
????? ?a???? ??????µe ta ?e????ta ?i lt 3 ?a?
? i a?t???. - ???a? ?(?)2/61/3 ?a? ?(?)3/6 1/2
- ? ?(?,?) ?(i2) 1/6 ?(?) ?(?)
- ?p?s?? ?(??) 1/3 ?(?) ?a? ?(??) 1/2 ?(?)
- S?µe??te?? ?t? t? ?e????? G i ? 3 de? e??a?
a?e?a?t?t? t?? ? (??at???)
10Te???µa ?????? ???a??t?ta?
- ?? ta ?e????ta ?i, i1,2,n ap?te???? ??a
d?aµe??sµ? t?? ????? ap?te?esµat?? S, d??ad? a? - ???, a? ??a t? ?e????? ? e???µe t?? ?p? s??????
p??a??t?te? ?(??i), i1,2,,n t?te µp????µe ?a
ß???µe t?? p??a??t?ta ?(?) µes? t?? ?e???µat??
t?? ?????? p??a??t?ta? -
11?a?ade??µa efa?µ???? t?? Te???µat?? t?? ??????
???a??t?ta?
- Te??e?ste t?? ???? ap?te?esµat?? S p?? p????pte?
ap? t? ????µ? e??? ?a????, ?a? ta ?e????ta ?i
i. - ?a ?i ap?te???? ??a d?aµe??sµ? t?? ????? S
- Te??e?ste t? ?e????? ?a?t?? ap?te?esµa ?a?
est? Q t? ap?te?esµa e??? pe??aµat??. ? ?(?)
ß??s?eta? ?? e???
12?a???a? t?? Bayes
- ? ?a???a? t?? Bayes d??e? t?? ?p? s??????
p??a??t?ta ?(?i?) a? ?e???µe t?? ?p? s??????
p??a??t?te? ?(??i) µes? t?? s?es?? - ?a?ade??µa G?a t? p??????µe?? pa?ade??µa
ß??s???µe t?? ?(?2?) ?? e???
13?s??s?
- Se µ?a p??? t?e?? µa??e? a?t?????t??, A, B and C
?ate???? t? 20, 30 ?a? 50 t?? a???a?,
a?t?st???a. - ? p??a??t?ta ?a ??e?as?e? e?a aµa?? ep?s?e?? t??
p??t? ????? ?????f???a? t?? e??a? 5, 10 ?a?
15, a?t?st???a. - (a) ???a e??a? ? p??a??t?ta ep?s?e??? e???
aµa???? t?? p??t? ????? ?????f???a? t???? - (b) ?? e?a aµa?? e?e? a?a??? ep?s?e??? t?? p??t?
????? p??a e??a? ? p??a??t?ta ?a e??a? µa??a? ??
14?pa?t?s?
15?fa?µ??? st?? ep????????e?
- ?etad?d??ta? s?µata ?i µe p??a??t?te? P(Ei).
- St?? ?e?t? ?aµßa?eta? t? s?µa R.
- ?p? µet??se?? e???µe ß?e? t?? p??a??t?te?
?(REi). - ?a? e?d?afe???? ?? p??a??t?te? P(EiR).
- ??? ß??s???µe t?? P(EiR)??
- ?a???a? Bayes
16???a?e? ?etaß??te? (rv - random variables)
- ??a t??a?a µetaß??t? X(s) e??a? µ?a p?a?µat???
s??a?t?s? µe ped?? ???sµ?? t?? ???? t?? ?e????t??
S, s ? S. - ??a t??a?a µetaß??t? µp??e? ?a e??a?
- ??a???t?, ?
- S??e???
- ??a t??a?a µetaß??t? µp??e? ?a pe????afe?
- ?e t? s?µß??? t??, p.?. t? ? (pa?t?te ?efa?a??)
- ?e t?? pe????? t?µ?? t?? p.?. ? ? ?
- ?e t?? pe????af? t?? ?ata??µ?? t?? t?µ?? t?? x
(?? t?µe? p?? pa???e? ? µetaß??t? s?µß??????ta?
µe µ???? ??aµµa) - ? s?es? ?x s?µß????e? t? ?t? ? t??a?a µetaß??t?
? p??e t?? t?µ? x
17S??a?t?s? ?ata??µ?? p??a??t?ta? (PDF)
- ???µa?eta? ?a? s??a?t?s? a????st???? ?ata??µ??
(Cumulative Distribution Function CDF) - ???sµ?? FX(x) F(x) P(X ? x) Ps?S
X(s)?x - ?d??t?te?
- ? F(x) e??a? µ???t??a µ? a??a??µe??
- d??ad? F(a) F(b) a? a b
- F(-?) 0
- F(?) 1
- P(a lt X ? b) F(b) F(a)
- ??????t? ? CDF pe????afe? p????? t?? ?ata??µ?
t?µ?? µ?a? t??a?a? µetaß??t??, ???s?µ?p??e?ta?
s????este?a ? pdf ? pmf
18S??a?t?s? ?????t?ta? ???a??t?ta? (pdf)
- ???sµ?? fX(x) dFX(x) /dx ? f(x) dF(x) /dx
- ? pdf pa??sta?e? t?? ???µ? a???s?? t?? CDF ? t?
p?s? p??a?? e??a? ?a ?aße? ? X t?? t?µ? x - ?d??t?te?
- f(x) ? 0
- ?
- ? f(x)dx 1,
- -? b
- P(a lt X ? b) ? f(x)dx F(b) F(a)
- x a
- F(x) ? f(s)ds
- -8
19??aµe??µe?e? t?µe? (Expected values)
- ?? a?aµe??µe?e? t?µe? e??a? e?a? s??t?µ?? t??p??
(µe?????) pe????af?? µ?a? t??a?a? µetaß??t?? X - ?? p?? sp??da?e? e??a? ?
- ? µes? t?µ? ?(?) mX ? xf(x)dx
-
- ? ? - H µetaß??t?t?ta s?2 E(X mX 2) ? (x mX
)2 f(x)dx -
- ? - H s? ???µa?eta? t?p??? ap????s?
- ? ?p?????sµ?? t?? a?aµe??µe??? t?µ?? ???eta? µe
a?a???? t??p? ?a? ??a ?p??ad?p?te s??a?t?s? g(X)
t?? ? - ?
- ?g(X) ? g(x)f(x)dx
- - ?
20?d??t?te? µes?? t?µ?? ?a? µetaß??t?t?ta?
- ? µes? t?µ? e??a? ??a s?????? ??a µet?? t?? µes??
t?µ?? t?? t?µ?? p?? pa??e? ? r.v. se µe?a??
a???µ? pe??aµat?? - ?cX cEX
- Ec c
- EXc EXc ?p?? c sta?e?a
- H µetaß??t?t?ta e??a? ??a µet?? t?? d?asp??a? t??
t?µ?? t?? r.v. ???? ap? t?? µes? t?µ? - s?2 VARX ?(? mX)2
- VAR(cX) c2 VAR(X)
- VAR(c) 0
- VAR(Xc) VAR (X)
21???s?t?ta Chebyshev
- ?st? ? t??a?a µetaß??t? µe µes? t?µ? mX ?a?
µetaß??t?t?ta s?2 - ??te ??a ?a?e d, P(X - mX ? d) ? s?2 / d2
- ?? µe?e??? t?? µetaß??t?t?ta? ?a?????e? t? t??p?
p?? ?ata?eµ??ta? ?? t?µe? t?? ???? ap? t?? µes?
t?µ? t?? - ?? ???? p?? ?a?????eta? ap? t?? a??s?t?ta
Chebyshev ???s?µ?p??e?ta? ??a t?? p??sd????sµ?
t?? d?ast?µat?? eµp?st?s???? st?? t?µe? µ?a?
p??s?µ???s??.
221? ?a?ade??µa ?µ???µ??f? ?ata??µ?
- ? 0.1, 0 ? x ? 10
- f(x) ?
- ? 0, a????
?e t? µetaß??t? a?t? pa??sta???µe t?? a???st?
fas? e??? ?µ?t???e?d??? s?µat?? µeta?? 0 ?a?
2p ? p ?a? p
f(x)
0.1
x
0
10
??a s??e??? t??a?a µetaß??t? e?e? ?µ???µ??f?
?ata??µ? µeta?? a ?a? b, a? pa???e? t?µe? µe ?s?
p??a??t?ta se d?ast?µata µe ?s? µ????.
231o ?a?ade??µa (s??e?e?a)
242? ?a?ade??µa Gaussian pdf?a?????? ?ata??µ?
N(mX, s?2)
s
N(0,1)
? p?? sp??da?a ?a? ????? rv. ? ?e?µ????
????ß?? e?e? ?a?????? ?ata??µ?
??a Gaussian t??a?a µetaß??t? ?a?????eta? p?????
ap? t?? µes? t?µ? ?a? t?? µetaß??t?t?ta t?? (?
t?? t?p??? ap????s?).
25??a t??ep????????a?? s?st?µa µe Gaussian ????ß?
S ? ?a
lt
RSN
R 0??
gt
??µp??
?e?t??
N ?(0,s2)
- ? p??a??t?ta ?a ?a?e? sfa?µa ? de?t?? ?ta?
ste??eta? t? S-a (?p?te t? ?aµßa??µe?? s?µa
e??a? t? R-aN t? ?p??? e?e? ?ata??µ? ?(-a,sn) )
e??a?
26? s??a?t?s? sfa?µat?? Q-function
- ? s??a?t?s? sfa?µat?? e??a? ? t?p???? t??p??
e?f?as?? t?? p??a??t?ta? sfa?µat?? se ??e?st?
µ??f?
N(0,1)
- A???µ?t???? ?p?????sµ?? t?? s??a?t?s?? Q
??a x ? 3
27? s??a?t?s? Q ?a? ? p??s????s? t??
x
283? ?a?ade??µa- Rayleigh pdf
?p?? ?? ? ?a? ? e??a? Gaussian r.v. µe µes?
t?µ? 0 ?a? µetaß??t?t?ta s2
- H R e??a? µ?a t??a?a µetaß??t? µe ?ata??µ?
Rayleigh
- H Rayleigh pdf ???s?µ?p??e?ta? s???a ??a
t?? - p??s?µ???s? t?? fa???µe??? t?? d?a?e??e??
(fading) - ?ta? de? e???µe s?µa ?pt???? epaf?? se µ?a
as??µat? - s??des? a??a s?µata ap? p???ap?e?
d??de?se??
29? Rayleigh pdf
30S??a?t?se?? µa?a? p??a??t?ta?Probability Mass
Functions (pmf)
- ??a d?a???t? t??a?a µetaß??t? µp??e? ?a
pe????afe? µe pdf a? ep?t?e???µe t?? ???s?
????st???? s??a?t?se?? - S?????? ?µ?? ???s?µ?p????µe t?? s??a?t?se?? µa?a?
p??a??t?ta? (pmf) - p(x) P(X x)
- ??e? ?d??t?te? a?t?st???e? t?? pdf, d??.
- p(x) ? 0
- S p(x) 1
- P(a ? X ? b)
31?ese? t?µe? d?a???t?? t??a??? µetaß??t??
- G?a t?? d?a???te? t??a?e? µetaß??te? e???µe
32?a?ade??µa 1 ??ad??? ?ata??µ?
- ???s?µ?p??e?ta? s????tata ??a t?? pa?astas?
d?ad???? ded?µe??? - ?es? t?µ?
- ?etaß??t?t?ta
- ?? ?? ? ?a? ? e??a? a?e?a?t?te? d?ad??e? t??a?e?
µetaß??te?, - t?te pXY(0,0) pX(0) pY(0) ½ ½ 1/4
33?a?ade??µa 2 ?????µ??? ?ata??µ?
?p?? ?? ?i, i1,2,,n
e??a? a?e?a?t?te?
d?ad??e? t??a?e? µetaß??te? µe
- t?te ? ?ata??µ? t?? Y e??a?
- ?es? t?µ? mY n p
- ?etaß??t?t?ta
34?a?ade??µa 2 ?????µ??? ?ata??µ? (2)
- ?p??este ?t? e?peµp??µe µ?a a???????a ap? 31 bits
??d???p???µe?? µe ??d??a d?????s?? e?? ?a? 3
?a??? - ?? ? p??a??t?ta sfa?µat?? e??? bit e??a? p0.001
p??a e??a? ? p??a??t?ta ?a ??f?e? ? a???????a µe
sfa?µa?? - P(esfa?µe?? a???????a) 1- P(???? ????
a???????a?)
- ?? de? ???s?µ?p????e? ? ??d??a? d?????s??
?a??? ? - p??a??t?ta sfa?µat?? e??a?
- 1 (1-0.001)31 0.0305 3 ? 10-2
35????ap?e? t??a?e? µetaß??te?
- ?st?sa? ?? r.v. ? ?a? Y p?? ??????ta? st?? ?d??
???? de??µat?? S. H ap? ?????? a????st???
s??a?t?s? ?ata??µ?? (joint cdf) ????eta? ?? - FX,Y(x,y) P(X x, Y
y) - ?s? S X(s) x, Y(s) y
- e?? ? ap? ?????? s??a?t?s? ?ata??µ?? p??a??t?ta?
(joint pdf) ????eta? ??
36????ap?e? t??a?e? µetaß??te? (s??e?.)
- ?? ???a?e? (marginal) CDFs ?a? pdfs t?? ? ?a? Y
e??a? ?? - ?p????µe ep?s?? ?a ???s??µe t?? ?p? s??????
(conditional) pdf fXY(xy) fX,Y(x,y)/f?(y)
e?? ??a stat?st??a a?e?a?t?te? r.v. e???µe
fX,Y(x,y) fX(x) fY(y) - ?µ???? µp????µe ?a ???s??µe s??a?t?se?? t?? d??
µetaß??t?? g(?,?) ?a? ?a ?p?????s??µe t?? µese?
t?µe? t???, ?p?? e??a? ? s?µµetaß??t?t?ta
(covariance) - COV(X,Y) s?,?2 ?(?-mX)(Y-mY)
???-mXmY - ?? ?? ? ?a? ? e??a? a?e?a?t?te? t?te s?,?2 0
- To a?t?st??f? de? ?s??e? pa?a µ??? ??a Gaussian
r.v.
37?p? ?????? Gaussian µetaß??te?
- ? ap? ?????? pdf d?? ap? ?????? Gaussian
µetaß??t?? e??a? ? - ?p?? s?,?2 ?(?-mX)(Y-mY)
- a? s?,? 0 t?te fX,Y(x,y) fX(x)fY(y) gt X,Y
a?e?a?t?te? - d??. ??a Gaussian r.v a?e?a?t?s?a ? µ?de????
s?s?et?s? - ? t?p?? µp??e? ?a epe?ta?e? se n ap? ??????
Gaussian µetaß??te?
38?????sµata t??a??? µetaß??t??
- ?? e???µe µ?a a???????a n t??a??? µetaß??t??
(?1, ?2,,?n) µe ßas??a t?? ?d?e? ?d??t?te?, t?
µes? a????sµa t??? a?aµe?eta? ?a e?e? ????te??
t??a?a s?µpe??f??a ap? t?? ???e µetaß??t?. - ? ??µ?? t?? ?e?a??? ????µ?? ?a? t? ?e?t????
???a?? Te???µa ap?te???? t??? µa??µat???
d?at?p?s? a?t?? t?? ?e????t??.
39?s?e??? ??µ?? t?? ?e?a??? ????µ??
- ?? ?? t??a?e? µetaß??te? ?1, ?2,,?n e??a?
as?s?et?ste? µe µese? t?µe? ?se? µe mX ?a?
µetaß??t?t?te? ?se? µe s?2 lt8 t?te ??a ???e e gt
0 e???µe - ???ad? ? µes?? ???? t?? a????sµat?? t??
µetaß??t?? s??????e? (?? p??? t?? p??a??t?ta)
st?? ????? µes? t?µ?
40?e?t???? ???a?? ?e???µa
- ?? ?e?t???? ???a?? Te???µa (Central Limit Theorem
CLT) pe????afe? t?? ?ata??µ? t?? µes?? t?µ??
t?? a????sµat?? µe?a??? p?????? t??a???
µetaß??t??. - ?? a?e?a?t?te? t??a?e? µetaß??te? ?1, ?2,..., ??
e???? t?? ?d?a pdf µe µes? t?µ? 0 ?a?
µetaß??t?t?ta s - ??????µe t?? r.v.
- ?a??? t? ? ? ? ? ?ata??µ? t?? ? te??e? p??? t??
?a?????? (Gaussian) ?ata??µ? ?(0,s2/?)) - St?? p?a??, t? fa???µe?? ???eta? eµfa?e? a??µa
?a? ??a ?10 - ? ?e?µ???? ????ß?? p???a?e?ta? ap? t?? t??a?a
????s? t?? (s?ed?? ape???? t? p?????)
??e?t??????. ?ata s??epe?a µp??e? ?a ?e????e? µe
µe?a?? a???ße?a ?t? ? ?ata??µ? t?? ?e?µ????
????ß?? e??a? Gaussian.
41?a?ade??µa ??a t? ?e?t???? ???a?? ?e???µa
µ0, s1
?2
?5
N10
?10
42?a?ade??µa
- http//www.jhu.edu/virtlab/stats/Stats.html