Title: Knowledge based Personalization
1Knowledge based Personalization
2Outline
- Introduction
- Background InfoQuilt system
- Personalization in InfoQuilt
- Related Work
- Conclusions and Future Work
3Introduction
- Semantic web - components
- Semantics of data
- Semantics of humans interest
- Personalization is a part of the second component
4Background the InfoQuilt system
- Semantics based information processing
- IScape Information correlation
- Knowledge sharing based on multiple ontologies
5Background Overall Architecture
server
6Background Architecture of a Peer
Personalized Knowledge Base
Personalization Agent
IScape Execution
7Background Personalized Knowledge Base
Shared ontologies
Personalized ontologies
8Personalization in InfoQuilt system
- Representation of user profiles
- Personalization Techniques
- Personalization Algorithm
- Examples
9Representation of user profiles
- Set of tuples of type ltKeyword, Ontology,
Frequency, Latest interest, IScapegt - Keyword the term used to query
- Ontology used in IScape
- Frequency frequency of query
- Latest interest boolean value
- IScape the name of the last queried IScape
10Personalization Techniques
- Score can be computed based on a scale of 0..1
- Keywords matched
- Profiles matched
- Knowledge about latest context
- Frequency of querying a domain
- Query relationship
- Distance from a domain of interest
11Personalization Techniques-keywords matched
- Not in profiles
- Query Bulldog Football
- Total number of keyword n 2
- Number of keywords matched m
Bulldog Bulldog Football Football
P2p P2p
UGABaseball UGABasketball UGAFootball ½ ½ 1 collegefootball professionalfootball UGAFootball ½ ½ 1
12Personalization Techniques- profiles matched
P2p
UGABaseball UGABasketball UGAFootball collegefootball professionalfootball 0/2 0/2 1 0/2 0/2
- P1 ltbulldog, UGAFootball, f1, true,IScape1gt
- P2 ltschedule, UGAFootball, f2, true,IScape2gt
- Query Bulldog Schedule
bulldog
schedule
13Personalization Techniques- knowledge about
latest context
- Advantage take the current ontology of the
current query - Example
- P1 ltbulldog, UGAFootball, f1, true,IScape1gt
- P2 ltfootball, UGAFootball, f2, true,IScape1gt
- P3 ltbulldog, UGABasketball, f3, false,IScape3gt
- P4 ltbulldog, UGABaseball, f4, false,IScape4gt
- It shows UGAFootball is the current ontology of
the term bulldog
14Personalization Techniques- frequency of
querying a domain
- P1 ltbulldog, UGAFootball, 10, true,IScape1gt
- P2 ltfootball, UGAFootball, 12, true,IScape1gt
- P3 ltbulldog, UGABasketball, 5, false,IScape3gt
- Query bulldog football
- Matched ontologies UGAFootball and UGABasketball
- UGAFootball (1012)/(10125)
- UGABasketball 5 / (10125)
15Personalization Techniques- Query relationships
- More concrete than e-commerce market association
rules - Buy Cereal ? Buy Milk
- Query Relationship
- if a bulldog football team has a game scheduled,
then the user may be interested in attending the
game so he may query for flight ticket and vice
versa. - Use framework for inter-ontological relationships
to define query relationships - spatiallyNear(UGAFootball.gameVenue,
Flight.arrivalCity) temporallyNear(UGAFootball.
gameDate, Flight.arrivalDate)
16Personalization Techniques- Query relationships
- Query Relationships
- Flight ?? UGAFootball, Flight ?? UGABasketball
- Query bulldog schedule
Team Flight Query Basketball Football Football
Date Nov. 16, 2001 Nov. 17, 2001 Nov. 19, 2001 Dec. 1, 2001
Location Atlanta, GA Athens, GA Springfield, MA Athens, GA
17Personalization Techniques- Distance from a
domain of interest
- The smaller the distance, the more relevant it is
likely to be. - Example)
- there is no query history about the term
gamecock in a users profile. - P1 ltbulldog, UGAFootball1,5, true, Iscape1gt
- Query gamecock schedule
- P2P? gamecocks, USCFootball
- USCFootball10.50.25 0.125
- Gamecocks 10.50.50.50.50.250.250.00390625
18Personalization Algorithm
Technique Case 1 Case 2
Keywords Matched ? ?
Profiles Matched ? ?
Knowledge of Latest Context ? ?
Frequency of Querying a Domain ? ?
Query Relationships ? ?
Distance from a Domain of Interest ? ?
19Personalization Algorithm
Technique Case 1 Case 2
1 Keywords Matched 0.4 0.5
2 Profiles Matched 0.2 -
3 Query Relationships 0.15 0.35
4 Frequency of Querying a Domain 0.1 -
5 Knowledge of Latest Context 0.1 0.1
6 Distance from a Domain of Interest 0.05 0.05
These weights are configurable
20Examples
Personalized Knowledge Base
21Example 1 without profile information (first
Query)
22Example 1 keyword matching
Ontologies 1 2 3 4 5 6 Total
UGAFootball 0.51.0 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.5
UGABasketball 0.51.0 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.5
UGAHockey 0.51.0 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.5
JCBulldogs 0.50.5 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.25
CollegeSports 0.50.5 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.25
AnimalBulldogs 0.50.5 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.25
CollegeNews 0.50.5 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.25
CollegeBasketball 0.50.5 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.25
USCNewspaper 0.50.5 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.25
CollegeFootball 0.50.5 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.25
USCBasketball 0.50.5 0.00.0 0.10.0 0.00.0 0.350.0 0.050.0 0.25
23Example 2
24Example 2 use of user profile
P1 ltbulldogs, UGAFootball, 2, true,
Iscape1gt Query bulldogs
Ontologies 1 2 3 4 5 6 Total
UGAFootball 0.41.0 0.21.0 0.11.0 0.11.0 0.150.0 0.051.0 0.85
UGAHockey 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.015625 0.40078
UGABasketball 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.015625 0.40078
AnimalBulldogs 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.000244 0.4000122
JCBulldogs 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.000244 0.4000122
25Example 3
26Example 3 latest context
P1 ltbulldogs, UGAFootball, 10, false, Iscape1gt P2
ltbulldogs, UGABasketball, 2, true,
Iscape2gt Query bulldogs
Ontologies 1 2 3 4 5 6 Total
UGAFootball 0.41.0 0.20.5 0.10.0 0.10.83 0.150.0 0.051.0 0.633
UGAHockey 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.015625 0.40078
UGABasketball 0.41.0 0.20.5 0.11.0 0.10.167 0.150.0 0.051.0 0.667
AnimalBulldogs 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.000244 0.4000122
JCBulldogs 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.000244 0.4000122
27Example 4 - query relationship
P1 ltbulldogs, UGAFootball, 12, false, Iscape1gt P2
ltbulldogs, UGABasketball, 10, true, Iscape2gt P3
lttravel, AirTravel, 2, true, Iscape3gt Query
bulldogs
28Example 4
29Example 4 query relationship
Team Flight Query UGABasketball UGAFootball UGAFootball
Date Nov. 29, 2001 Nov. 29, 2001 Nov. 30, 2001 Dec. 30, 2001
Location Atlanta, GA Springfield, MA Athens, GA Athens, GA
Ontologies 1 2 3 4 5 6 Total
UGAFootball 0.41.0 0.20.5 0.10.0 0.10.545 0.151.0 0.051.0 0.7545
UGAHockey 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.015625 0.40078
UGABasketball 0.41.0 0.20.5 0.11.0 0.10.454 0.150.0 0.051.0 0.6954
AnimalBulldogs 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.000244 0.4000122
JCBulldogs 0.41.0 0.20.0 0.10.0 0.10.0 0.150.0 0.050.000244 0.4000122
30Example5 Query with the new term
31Example 5 new query term
P1 ltbulldogs, UGAFootball, 12, false, Iscape1gt P2
ltbulldogs, UGABasketball, 10, true, Iscape2gt P3
lttravel, AirTravel, 2, true, Iscape3gt Query
gamecocks
Ontologies 1 2 3 4 5 6 Total
USCFootball 0.51.0 0.10.0 0.350.0 0.050.125 0.50625
USCHockey 0.51.0 0.10.0 0.350.0 0.050.015625 0.50078
USCBasketball 0.51.0 0.10.0 0.350.0 0.050.125 0.50625
USCNewsPaper 0.51.0 0.10.0 0.350.0 0.050.0009765 0.5000488
32Related Work
- Features of Knowledge Based personalization in
InfoQuilt not supported by any other
personalization systems - Keywords and concepts in ontologies are used to
locate them - Query relationships between domains identify
domains that the users profile provides no
information for
33Related Work
- OBIWAN ( Alexander P, Susan G)
- Use a vector space model to classify documents
- use length, time, and the strength of match to
track users interest - myPlanet (Yannis K, John D, Enrico M, Maria V,
Simon S) - An ontology-driven personalized news publishing
service - Use simple relationships in the ontologies to
deliver content that may be of interest to the
user
34Related Work
- Scalable online personalization on the web
(Anindya D, Kaushik D, Debra V, Krithi R,
Shamkant N) - Collaborative filtering approach
- Action rules and market basket rules
- Dynamic profile
35Conclusion
- Personalization in InfoQuilt
- Ontologies in the personalized knowledge base
reflect the users perception of the domain - Keywords that are specified by the ontology, are
useful for identifying other relevant ontologies - A number of techniques combined to help the users
find relevant ontologies - Query relationships can identify related domains
of interest in the current context of users query
36Future Work
- For each domain, it is possible to identify a set
of terms that indicate the context. These can
also be used to locate ontologies. - The only type of relationships in the ontologies
used for identifying domains that may be of
interest to the user is is-a. We can explore
the user of other types of relationships
supported by ontologies - Evaluating query relationships requires work
equivalent to evaluating one IScape. Instead, the
results from the previous IScape can be cached.
37Future Work
- Keyword matching can be further given weights
depending on which component of ontology the
keyword matched. For example, if a keyword
matches the name of a class as opposed to
description, it should have higher value. - Experimenting with large amount of users and
ontologies can help in identifying a reasonable
weight assignment for the techniques.
38Thank You!