Title: Magnetenzephalogramm, MEG
1Magnetenzephalogramm, MEG
2Equivalent dipole
3(No Transcript)
4MEG
5(No Transcript)
6(No Transcript)
7(No Transcript)
8EEG vs. MEG
9Differences between EEG and MEG
- MEG is only sensitive to the tangential
component of the dipoles, but insensitive to the
radial component. EEG measures both. This implies
that MEG recordings are mainly based on activity
in the sulci, but not in the gyri (1/3 of the
cortex).
- In contrast to EEG, MEG is insensitive to the
inhomogeneities of skull and scalp which result
in field spreading. As a consequence, the ERF is
often more focal than the ERP.
10Recording of ERPs and ERFs
- Strength
- - high temporal resolution
- - direct measure of neural activity
- Weakness
- - measures only a part of the neural
- activity (open fields)
- - poor spatial resolution (inverse problem)
11Mismatch negativity (MMN)entdeckt durch Näätänen
1978
12Winkler et al. 1999EEG Mismatch Negativity
Erwerb eines finnischen Vokalkontrastes durch
Ungarn
13Phillips et al. 2000 J Cog Neuroscience
14Phillips et al. 2000 J Cog Neuroscience
15Phillips et al. 2000 J Cog Neuroscience
16Phillips et al. 2000 J Cog Neuroscience
17The inverse problem
Aim Finding the source distribution underlying a
given scalp potential map. Problem The inverse
problem in EEG and MEG has no unique solution.
For any given potential (or magnetic field)
distribution over the scalp surface, a variety of
possible neural source distributions exists that
can produce the same surface map. The number of
possible current source distributions that
matches a given set of surface data may be large.
18Dipole analysis
- A head model is assumed, e.g. a three-shell
model (brain, skull, scalp), or a more realistic
head model.
- This model allows the calculation of the scalp
electrical potential generated at a particular
location on the scalp by an intracerebral source
with a particular location, orientation and
strength.
- In a number of iterative steps the source
parameters can be changed until the difference
between the modelled and the recorded waveforms
is minimized.
19Constraining the inverse problem
Actual solutions often involve information about
neurophysiology and anatomy to reduce the
solution space.
- Sources (dipoles) may change strength, but not
location or orientation during a specified time
interval (spatial-temporal constraint).
- Sources are all located at the same depth (e.g.
in the neocortex). This approach is referred to
as spatial deconvolution, de-blurring, or
cortical imaging. It is based on the unique
relation between surface potentials and sources
at a fixed depth.
20Dipole analysis
A source dipole is defined by its location,
orientation, and strength
Sources for the Bereitschaftspotential fit with
1 and 2 stationary dipoles (extension of the left
middle finger)
21Die Kombination von hämodynamischen und
elektromagnetischen Daten kann
Informationen über räumliche UND zeitliche
Eigenschaften von Hirnaktivierungen bieten.
22Geschätzte Zeitfenster der Wortproduktionsprozesse
Konzeptuelle Vorbereitung von der
Bildpräsentation bis zum lexikalischen
Konzept 175 ms (Thorpe et al.,1996 Schmitt et
al., 2000) Lemmazugriff 115 ms (Levelt et
al., 1992 Roelofs, 1992 Schmitt et al.,
2001) Formenkodierung Wortformzugriff
40 ms (van Turennout et al., 1998)
Syllabifizierung 125 ms (van Turennout et
al., 1997 Wheeldon Levelt, 1995)
Phonetische Enkodierung bis Beginn der
Aussprache 145 ms
Gesamt 600 ms (Jescheniak Levelt, 1994
Levelt et al., 1998 Damian et al., 2002)
23Picture naming MEG
Salmelin, Hari, Lounasmaa, Sams (1994), Fig. 1
24Gemessene (links) und erwartete (rechts)
Zeitfenster beiBildbenennung
MEG data from Salmelin et al., 1994 Levelt et
al., 1998 Maess et al., 2002
Indefrey, P. and Levelt, W.J.M. (2004) Cognition