Title: Privacy Preserving Serial Data Publishing By Role Composition
1Privacy Preserving Serial Data Publishing By Role
Composition
- Yingyi Bu1, Ada Wai-Chee Fu1, Raymond Chi-Wing
Wong2, - Lei Chen2, Jiuyong Li3
- The Chinese University of Hong Kong1The Hong
Kong University of Science and Technology2 - University of South Australia3
Prepared by Raymond Chi-Wing Wong Presented by
Raymond Chi-Wing Wong
2Outline
- Sequential Releases
- Existing Privacy Models
- m-invariance
- Privacy breaches
- Our Proposed Privacy Model
- l-scarcity
- Experiments
- Conclusion
31. Sequential Releases
Time 1
Public
This table satisfies some privacy
requirements(e.g., m-invariance)
Published Data
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Medical Data
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
41. Sequential Releases
This table satisfies some privacy
requirements(e.g., m-invariance)
Time 1
Time 2
Public
Public
Published Data
Published Data
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Medical Data
Medical Data
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Insertions, deletions and updates
51. Sequential Releases
This table satisfies some privacy
requirements(e.g., m-invariance)
Time 1
Time 2
Time 3
Public
Public
Public
Published Data
Published Data
Published Data
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Medical Data
Medical Data
Medical Data
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Insertions, deletions and updates
61. Sequential Releases
Problem At the current time t, we want to
generate a table which satisfies some privacy
requirements (e.g., m-invariance) with respect to
all published tables at any time lt t
Time 1
Time 2
Time 3
Public
Public
Public
Published Data
Published Data
Published Data
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Medical Data
Medical Data
Medical Data
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
72. Existing Privacy Models
Problem At the current time t, we want to
generate a table which satisfies some privacy
requirements (e.g., m-invariance) with respect to
all published tables at any time lt t
Considers insertions only Does not consider
deletions and updates
- Byun et al., Secure Anonymization for
Incremental datasets, Secure Data Management,
2006
Considers insertions only Does not consider
deletions and updates
- Fung et al, Anonymity for Continuous Data
Publishing, EDBT, 2008
Considers insertions and deletions only Does not
consider updates
- Xiao et al, m-invariance Towards Privacy
Preserving Re-publication of Dynamic Datasets,
SIGMOD, 2007
Updates cannot simply be regarded as a deletion
and then an insertion when privacy is considered.
Our proposed privacy model (l-scarcity) -
Considers insertions, deletions and updates
together
82. Existing Privacy Models
Problem At the current time t, we want to
generate a table which satisfies some privacy
requirements (e.g., m-invariance) with respect to
all published tables at any time lt t
- Sensitive Diseases
- Transient diseases
- Permanent diseases
e.g., If an individual is linked to flu in a
published table, s/he can be linked to flu or
not in the later published table.
e.g., If an individual is linked to HIV in a
published table, s/he MUST be linked to HIV in
the later published table (that they exist in).
We are the first to study these two kinds of
sensitive values.
92. Existing Privacy Models
Problem At the current time t, we want to
generate a table which satisfies some privacy
requirements (e.g., m-invariance) with respect to
all published tables at any time lt t
Does not consider transient/permanent values
Considers insertions only Does not consider
deletions and updates
- Byun et al., Secure Anonymization for
Incremental datasets, Secure Data Management,
2006
- Contributions
- We consider a more realistic setting of
sequential releases. - Insertions, deletions and updates
- Transient/permanent values
Considers insertions only Does not consider
deletions and updates
- Fung et al, Anonymity for Continuous Data
Publishing, EDBT, 2008
We cannot simply adapt these existing privacy
models to this realistic setting.
Considers insertions and deletions only Does not
consider updates
- Xiao et al, m-invariance Towards Privacy
Preserving Re-publication of Dynamic Datasets,
SIGMOD, 2007
Also considers transient/permanent values
Our proposed privacy model (l-scarcity) -
Considers insertions, deletions and updates
together
102. Existing Privacy Models
Problem At the current time t, we want to
generate a table which satisfies some privacy
requirements (e.g., m-invariance) with respect to
all published tables at any time lt t
Problem (m-invariance) At the current time t,
we want to generate a table which satisfies the
following. Probability that an individual is
linked to a sensitive value wrt all published
tables at any time lt t is at most 1/m.
- Byun et al., Secure Anonymization for
Incremental datasets, Secure Data Management,
2006
Problem (l-scarcity) At the current time t, we
want to generate a table which satisfies the
following. Probability that an individual is
linked to a sensitive value wrt all published
tables at any time lt t is at most 1/l.
- Fung et al, Anonymity for Continuous Data
Publishing, EDBT, 2008
- Xiao et al, m-invariance Towards Privacy
Preserving Re-publication of Dynamic Datasets,
SIGMOD, 2007
Our proposed privacy model (l-scarcity) -
Considers insertions, deletions and updates
together
11Public
Voter Registration List
Medical Data Some Useful Attributes
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
12Public
Voter Registration List
Medical Data Some Useful Attributes
Age Zip Code Disease
23 16355 Flu
22 15500 HIV
21 12900 Fever
26 18310 HIV
25 25000 Flu
20 29000 Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
13Public
Generalization
Voter Registration List
Medical Data Some Useful Attributes
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
3-diversity
Each individual is linked to HIV with
probability at most 1/3 in THIS PUBLISHED TABLE
3-diversity only focuses on ONE-TIME
publishing 3-invariance focuses on MULTIPLE-TIME
publishingIt also makes use of the idea of
3-diversity Idea Each individual is linked to
HIV with probability at most 1/3 with respect
to MULTIPLE PUBLISHED TABLES
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
143-invariance
Time 1
Public
Voter Registration List
Medical Data Some Useful Attributes
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
153-invariance
Time 1
Public
Time 1
Voter Registration List
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1
p2
p3
p4
p5
p6
Flu, HIV, Fever
p1
p2
p3
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
p4
p5
p6
Flu, HIV, Fever
Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
163-invariance
Time 1
Public
Time 1
Voter Registration List
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1
p2
p3
p4
p5
p6
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
173-invariance
Time 1
Public
Time 1
Voter Registration List
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1
p2
p3
p4
p5
p6
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
183-invariance
Time 1
Public
Voter Registration List
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1
p2
p3
p4
p5
p6
Flu, HIV, Fever
Time 1
Flu, HIV, Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
193-invariance
Time 1
Time 1
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1
p2
p3
p4
p5
p6
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
203-invariance
Time 1
Time 1
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
213-invariance
Time 1
Time 1
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Fever
Alice p4 26 18310 HIV
Bob p5 25 25000 Flu
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
223-invariance
Time 2
Time 1
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 25000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
233-invariance
Time 2
Time 1
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Medical Data Some Useful Attributes
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
p2
p3
p6
p1
p4
p5
Hospital
This table satisfies 3-invariance. This is
because each individual is linked to the SAME
signature.
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 25000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
Idea of 3-invariance Each individual is linked
to the SAME signature in each published table.
243-invariance
Time 2
Time 1
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Time 2
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 25000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
253-invariance
Time 2
Time 1
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Time 2
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 25000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
263-invariance
Time 2
Time 1
Time 2
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 25000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
273-invariance
Time 2
Time 1
Time 2
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 25000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
283-invariance
Time 2
Time 1
Time 2
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 25000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
293-invariance
Time 3
Time 1
Time 2
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 15000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 15000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
303-invariance
Time 3
Time 1
Time 2
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
Medical Data Some Useful Attributes
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 15000
John p6 20 29000
David pRL 31 31000
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
p2
p3
p5
p1
p4
p6
Hospital
Medical Data Some Useful Attributes
Medical Data
This table satisfies 3-invariance. This is
because each individual is linked to the SAME
signature.
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 15000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
313-invariance
Time 3
Time 1
Time 2
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Time 3
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 15000
John p6 20 29000
David pRL 31 31000
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 15000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
323-invariance
Time 3
Time 1
Time 2
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 15000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Time 3
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 15000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
333-invariance
Time 3
Time 1
Time 2
Time 3
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 15000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 15000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
343-invariance
Time 3
Time 1
Time 2
Time 3
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 15000
John p6 20 29000
David pRL 31 31000
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 15000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
353-invariance
Time 3
Time 1
Time 2
Time 3
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Public
Voter Registration List
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 15000
John p6 20 29000
David pRL 31 31000
Hospital
Medical Data Some Useful Attributes
Medical Data
Name PID Age Zip Code Disease
Raymond p1 23 16355 Flu
Peter p2 22 15500 HIV
Mary p3 21 12900 Flu
Alice p4 26 18310 HIV
Bob p5 25 15000 Fever
John p6 20 29000 Fever
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Flu
Alice p4 HIV
Bob p5 Fever
John p6 Fever
363-invariance
Time 1
Time 2
Time 3
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
373-invariance
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
Name PID Age Zip Code
Raymond p1 23 16355
Peter p2 22 15500
Mary p3 21 12900
Alice p4 26 18310
Bob p5 25 25000
John p6 20 29000
David pRL 31 31000
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
383-invariance
PID Signature
p1 Flu, HIV, Fever
p2 Flu, HIV, Fever
p3 Flu, HIV, Fever
p4 Flu, HIV, Fever
p5 Flu, HIV, Fever
p6 Flu, HIV, Fever
I can deduce that p1 and p6 cannot be linked to
HIV.
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
39PID HIV?
p1
p2
p3
p4
p5
p6
Yes
No
No
I can deduce that p1 and p6 cannot be linked to
HIV.
Proof by contradiction.
Suppose p1 is linked to HIV.
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
40PID HIV?
p1
p2
p3
p4
p5
p6
Yes
No
No
I can deduce that p1 and p6 cannot be linked to
HIV.
No
No
Proof by contradiction.
Suppose p1 is linked to HIV.
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
41PID HIV?
p1
p2
p3
p4
p5
p6
Yes
No
No
I can deduce that p1 and p6 cannot be linked to
HIV.
No
No
Proof by contradiction.
No
Suppose p1 is linked to HIV.
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
42PID HIV?
p1
p2
p3
p4
p5
p6
Yes
No
No
I can deduce that p1 and p6 cannot be linked to
HIV.
No
No
p1 CANNOT be linked to HIV.
Proof by contradiction.
No
Suppose p1 is linked to HIV.
Contradiction!
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
43PID HIV?
p1
p2
p3
p4
p5
p6
No
I can deduce that p1 and p6 cannot be linked to
HIV.
No
Proof by contradiction.
Yes
Suppose p6 is linked to HIV.
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
44PID HIV?
p1
p2
p3
p4
p5
p6
No
No
No
I can deduce that p1 and p6 cannot be linked to
HIV.
No
Proof by contradiction.
Yes
Suppose p6 is linked to HIV.
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
45PID HIV?
p1
p2
p3
p4
p5
p6
No
No
No
No
I can deduce that p1 and p6 cannot be linked to
HIV.
No
Proof by contradiction.
Yes
Suppose p6 is linked to HIV.
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
46PID HIV?
p1
p2
p3
p4
p5
p6
No
No
No
No
I can deduce that p1 and p6 cannot be linked to
HIV.
No
p6 CANNOT be linked to HIV.
Proof by contradiction.
Yes
Suppose p6 is linked to HIV.
Contradiction!
Knowledge 1
Time 3
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
47Problem (m-invariance) At the current time t,
we want to generate a table which satisfies the
following. Probability that an individual is
linked to a sensitive value wrt all published
tables at any time lt t is at most 1/m.
I can deduce that p1 and p6 cannot be linked to
HIV.
I can deduce that p4 MUST be linked to HIV.
Privacy breaches!
Knowledge 1
Time 3
Time 1
Time 2
Why?
3-invariance
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
48Original Medical Data
Time 1
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
HIV-decoys (i.e., p1 and p3) are used to reduce
the strong linkage between p2 and HIV.
p2 is an HIV-holder.
p1 is an HIV-decoy.
I can deduce that p4 MUST be linked to HIV.
p3 is an HIV-decoy.
Privacy breaches!
Knowledge 1
Time 3
Time 1
Time 2
Why?
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
49Original Medical Data
Time 1
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
p2
p1
p3
p2 is an HIV-holder.
HIV-decoy
p1 is an HIV-decoy.
HIV-holder
HIV-decoy
I can deduce that p4 MUST be linked to HIV.
p3 is an HIV-decoy.
Privacy breaches!
Knowledge 1
Time 3
Time 1
Time 2
Why?
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
50Original Medical Data
p4
p6
p5
Time 1
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
p2
p1
p3
HIV-decoy
HIV-holder
HIV-decoy
p4 is an HIV-holder.
I can deduce that p4 MUST be linked to HIV.
Privacy breaches!
Knowledge 1
p5 is an HIV-decoy.
Time 3
Time 1
Time 2
Why?
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p6 is an HIV-decoy.
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
51Original Medical Data
p4
p6
p5
Time 1
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
p2
p1
p3
HIV-decoy
HIV-holder
HIV-decoy
I can deduce that p4 MUST be linked to HIV.
Privacy breaches!
Knowledge 1
Time 3
Time 1
Time 2
Why?
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
52Original Medical Data
p4
p6
p5
Time 1
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
p2
p1
p3
HIV-decoy
HIV-holder
HIV-decoy
I can deduce that p4 MUST be linked to HIV.
Privacy breaches!
Knowledge 1
Time 3
Time 1
Time 2
Why?
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
53Original Medical Data
p4
p6
p5
Time 1
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
p2
p1
p3
HIV-decoy
HIV-holder
HIV-decoy
I can deduce that p4 MUST be linked to HIV.
Privacy breaches!
Knowledge 1
Time 3
Time 1
Time 2
Why?
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
54Original Medical Data
p4
p6
p5
Time 1
Name PID Disease
Raymond p1 Flu
Peter p2 HIV
Mary p3 Fever
Alice p4 HIV
Bob p5 Flu
John p6 Fever
p2
p1
p3
p1 and p6 are in the same cohort.Besides, they
are in the same group of the published table at
time 3
HIV-decoy
Idea This kind of grouping can lead to privacy
breaches.
HIV-holder
HIV-decoy
I can deduce that p4 MUST be linked to HIV.
We can protect privacy by avoiding this kind of
grouping.
Privacy breaches!
Knowledge 1
Time 3
Time 1
Time 2
Why?
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
55Time 3
3-scarcity
p4
p6
p5
Age Zip Code Disease
22,25 15k,17k HIV
22,25 15k,17k Flu
22,25 15k,17k Fever
20,26 12k,29k Flu
20,26 12k,29k HIV
20,26 12k,29k Fever
p2
p1
p3
p1
p2
p5
p3
p4
p6
HIV-decoy
HIV-holder
HIV-decoy
Knowledge 1
Time 3
Time 1
Time 2
3-invariance
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
Age Zip Code Disease
21,25 12k,16k HIV
21,25 12k,16k Flu
21,25 12k,16k Fever
20,26 16k,29k Flu
20,26 16k,29k HIV
20,26 16k,29k Fever
p1
p2
p3
p2
p3
p6
p2
p3
p5
p1
p4
p6
p4
p5
p6
p1
p4
p5
56Time 3
3-scarcity
p4
p6
p5
Age Zip Code Disease
22,25 15k,17k HIV
22,25 15k,17k Flu
22,25 15k,17k Fever
20,26 12k,29k Flu
20,26 12k,29k HIV
20,26 12k,29k Fever
p2
p1
p3
p1
p2
p5
p3
p4
p6
HIV-decoy
HIV-holder
HIV-decoy
Knowledge 1
Time 1
Time 2
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
p1
p2
p3
p2
p3
p6
p4
p5
p6
p1
p4
p5
57p4
p6
p5
p2
p1
p3
Probability that an individual is linked to a
sensitive value wrt these three tables is at most
1/3.
HIV-decoy
HIV-holder
HIV-decoy
Knowledge 1
3-scarcity
Time 3
Time 1
Time 2
Age Zip Code Disease
22,25 15k,17k HIV
22,25 15k,17k Flu
22,25 15k,17k Fever
20,26 12k,29k Flu
20,26 12k,29k HIV
20,26 12k,29k Fever
Age Zip Code Disease
21,23 12k,17k Flu
21,23 12k,17k HIV
21,23 12k,17k Fever
20,26 18k,29k HIV
20,26 18k,29k Flu
20,26 18k,29k Fever
Age Zip Code Disease
20,22 12k,29k HIV
20,22 12k,29k Flu
20,22 12k,29k Fever
23,26 16k,25k Flu
23,26 16k,25k HIV
23,26 16k,25k Fever
p1
p2
p3
p1
p2
p5
p2
p3
p6
p3
p4
p6
p4
p5
p6
p1
p4
p5
583. Algorithm
- Propose an algorithm which follows the principle
- Whenever we form one group,
- choose one member from each cohort
593. Guarantee
- Theorem Our proposed algorithm can generate a
table which satisfies the following.Probability
that an individual is linked to a sensitive value
wrt all published tables at any time lt t is at
most 1/l (i.e., l-scarcity)
604. Experiments
- Real Data Set (CADRMP)
- http//www.hc-sc.gc.ca/dhp-mps/medeff/databasdon/i
ndex_e.html - Real hospital database
- Patient Information (Voter Registration List)
- 40,478 tuples
- Medical Record
- 105,420 tuples
- Each patient can be linked to multiple diseases
614. Experiments
- Studies
- Privacy Breaches of an existing model
- m-invariance
- Performance of our proposed algorithm
624.1 Privacy Breaches of an existing model
- Breach Rate
- The proportion of tuples with privacy breaches
- m-invariance
634.2 Performance of our proposed algorithm
- Measurements
- Computation Cost
- Relative Average Error
- Variations
- Parameter l (used in l-scarcity)
- No. of publishe