A%20Brief%20Comparison: - PowerPoint PPT Presentation

About This Presentation
Title:

A%20Brief%20Comparison:

Description:

... code Skinner Kane Model Steane [[7,1,3]] X [[7,1,3]] code Architectural Features ... CNOT Rotation Hadamard Ion-Trap Silicon Operator * Ion Total ... – PowerPoint PPT presentation

Number of Views:134
Avg rating:3.0/5.0
Slides: 16
Provided by: marli154
Learn more at: http://www.cs.cmu.edu
Category:

less

Transcript and Presenter's Notes

Title: A%20Brief%20Comparison:


1
A Brief Comparison
T. Metodiev D. Copsey F.T. Chong I.L.
Chuang M. Oskin J. Kubiatowicz
  • Ion-Trap and Silicon-Based Implementations of
    Quantum Computation

QARC Quantum Architectural Research Center MIT
UC Davis UC Berkeley U Washington
2
Motivation
  • Many Proposed Technologies
  • All work toward the same goal
  • some experimentally verified
  • Generalize the key constraints and capabilities
  • Purpose For Ion-Traps
  • Ion Traps are somewhat scalable
  • Decoherence-Free Subspace (DFS) encoding
  • Ballistic transport
  • Experimentally feasible

3
Brief Roadmap
  • Recall The Skinner-Kane Model
  • Ion-Trap Model
  • DFS encoding
  • Ballistic transport
  • Fault-Tolerant Computation

4
Skinner-Kane (SK)
T 100 mK
B
AC
-Gates
S
-Gates
A
B
Barrier
28
Si
-
e
-
e


31
31
P
P
Substrate
Skinner 02
5
Ion-Traps
Linear RF Trap
  • Qubits are held in the hyperfine interaction
    between the nuclear
  • and electronic spin.
  • Gates light induced coupling.
  • Information exchange is done by
  • Coulombic Interactions between ions and an ion
    head.
  • Problems with this approach.

Cirac and Zoller, 95
6
Inter-Connected Ion Traps
QCCD Quantum Charge-Coupled Device
Silicon Wafers
Kielpinski 02
7
collective dephasing
8
Fault-Tolerant Error Correction
  • Qubits Must be Encoded To Protect States
  • Errors Must Be Uncorrelated
  • Kane - avoidance, Ions - prevention

9
Lowest Level Encoding
  • Ion Traps
  • DFS encoding
  • Corrected through SM gate pulses
  • Skinner Kane Model
  • Steane 7,1,3 code

Steane 96
10
Second Level Encoding
  • Ion Traps
  • Steane 7,1,3 code
  • Skinner Kane Model
  • Steane 7,1,3 X 7,1,3 code

To Data Qubits
Encoded Zero Creation
Verification Of Encoded Zero State
Upper Level Codes are Recursive to the Lower
Levels
11
Architectural Features
  • Ion-Traps
  • High Parallelism
  • Trapping electrodes need not be very large
  • Ions must be at least 10µm apart
  • Skinner Kane
  • qubits are 15-100 nm apart
  • T lt 1K (Big Problem for Classical Gates)

12
Transport Static vs. Dynamic
  • Skinner-Kane (Static)
  • Neighbor-to-Neighbor Swaps 0.15m/s

Classical Gates
e1
e2
  • Ion-Traps (Dynamic)
  • Ballistic Transport 10m/s

13
Quick Analysis
Operator Silicon Ion-Trap
SWAP Transport Entangl. CNOT Rotation Hadamard 0.57 µs 0.15 m/s 4 µs 3.2 µs 0.3 µs 0.1 µs 6 µs 10 m/s 1 µs 2 µs 24 µs 1.5 µs
Ion Total Cost 400 µs
Skinner-Kane Cost 4500 µs
14
Conclusion
  • Alternative Approaches to
  • Error Correction
  • Future Work

15
Ion-Traps
QCCD Quantum Charge-Coupled
Device
Write a Comment
User Comments (0)
About PowerShow.com