CSE 246: Computer Arithmetic Algorithms and Hardware Design - PowerPoint PPT Presentation

About This Presentation
Title:

CSE 246: Computer Arithmetic Algorithms and Hardware Design

Description:

CSE 246: Computer Arithmetic Algorithms and Hardware Design Lecture 4 Instructor: Prof. Chung-Kuan Cheng – PowerPoint PPT presentation

Number of Views:107
Avg rating:3.0/5.0
Slides: 22
Provided by: Haik153
Learn more at: https://cseweb.ucsd.edu
Category:

less

Transcript and Presenter's Notes

Title: CSE 246: Computer Arithmetic Algorithms and Hardware Design


1
CSE 246 Computer Arithmetic Algorithms and
Hardware Design
Lecture 4
  • Instructor
  • Prof. Chung-Kuan Cheng

2
HW 2 Due 1/27/05
  • 11.2, 11.6, 11.7
  • Design a number system different from the
    conventional binary system. Inventing a new
    number system would be ideal. Show that the
    number system is better than the binary system in
    certain aspect/s. Also, design/describe the basic
    operations such as addition, subtraction, and
    comparison.

3
Topics
  • Adders
  • Synchronous v.s. Asynchronous
  • AND/OR gate v.s. Circuit
  • Logic angle
  • Graph angle (Prefix Adder)

4
Prefix Computation
  • FSM example
  • Given
  • initial state S0A
  • A sequence of inputs (0 0 1 1 1 0 1 0 1)
  • Derive the sequence of outputs

PS NS12
A B
B B
C B
Compute Ns N1M0 N2M0 M0 N3M1 M0 M0 N4M1 M1
M0 M0
PS NS13
A C
B C
C C
Input Sequence 0 0 1 1
State table
PS Next State
X0 X1
A B A
B B C
C B A
PS NS14
A A
B A
C A
5
Graph Based Approach
  • Consider the (g p) chain
  • break the long paths

g3
p3
g2
p2
C4
g1
p1
C1
6
Graph Based Approach
  • Generating g32 and p32

g3
g2
p3
p2
g1
p1
C4
g3
p3
g2
p2
C1
g32
p32
7
Graph Based Approach
  • Generating g10 and p10

g3
g2
p3
p2
g1
p1
C4
g1
p1
cin
cin
g10
p10
8
Graph Based Approach
  • Generating g30 and p30

g32
p32
g10
g30
p10
p30
9
Boolean Approach
  • g4 p4 ( g3 p3 ( g2 p2 ( g1 p1 ( g0 p0
    cin ) ) ) )
  • g4 , p4 g3 , p3 g2 , p2 g1 , p1 g0
    , p0 cin
  • g4p4g3 , p4p3 g2p2g1 , p2p1 g0
    , p0cin
  • g4p4g3p4p3(g2p2g1) , p4p3p2p1 g0 ,
    p0cin
  • g4p4g3p4p3(g2p2g1)(p4p3p2p1)g0 , (p4p3p2p1)
    p0cin

10
Prefix Adder
  • Given
  • n inputs (gi, pi)
  • An operation o
  • Compute
  • yi (gi, pi) o o (g1, p1) ( 1 lt i lt n)
  • Associativity
  • (A o B) o C A o ( B o C)

a, i1 aibi , otherwise 1, i1 ai xor bi ,
otherwise
gi pi
  • (g, p) o (g, p) (g, p)
  • gg pg
  • ppp

11
Prefix Adder Graph Representation
ai bi
  • Example
  • Ripple Carry Adder

(gi , pi)
x y
xoy xoy
12
Prefix Adders Conditional Sum Adder
8 7 6 5 4 3 2 1
13
Prefix Adders Conditional Sum Adder
8 7 6 5 4 3 2 1
  • alphabetical tree
  • Binary tree
  • Edges do not cross
  • For output yi, there is an alphabetical tree
    covering inputs (xi, xi-1, , x1)

14
Prefix Adders Conditional Sum Adder
8 7 6 5 4 3 2 1
  • The nodes in this tree can be reduced to
  • (g, p) o c gpc
  • From input x1, there is a tree covering all
    outputs (yi, yi-1, , y1)

15
Prefix Adders size and depth
  • Objective
  • Minimize of nodes, sc(n).
  • Minimize depth, dc(n)
  • Ripple Carry Adder
  • sc(8) 7
  • dc(8) 7
  • total 14
  • Conditional Sum Adder
  • sc(8) 12
  • dc(8) 3
  • total 15

16
Prefix Adders size and depth
  • Theoremsc(n)dnc(n) gt sc(n)dnc(n) gt 2n-2
  • dnc(n) means the depth of the last output
  • Proof
  • Alphabetical tree of yn contains n-1 internal
    nodes.
  • For each column where the prefix is not ready,
    at lease one extra node is needed, therefore we
    need at least n-(dnc(n) 1) extra nodes
  • sc(n) gtn-1(n(dnc(n)1))2n-2-dnc(n)
  • sc(n) dnc(n) gt 2n-2

17
Prefix Adders Brent Kung Adder
15 14 13 12 11 10 9 8 7 6 5 4 3
2 1 0
  • sc(16) 26
  • dc(16) 6
  • total 32

18
Carry Skip Adder
a3,0 b3,0
a7,4 b7,4
a11,8 b11,8
cin
c4
c8
c12
A0
A1
A2
p3,0
p7,4
p11,8
x
0 1
0 1
0 1
c12
c4
c8
  • If p3,0p3p2p1p0 1, then x cin

19
Carry Propagation Paths
  • A2 lt- MUX lt- MUX lt- cin
  • A2 lt- MUX lt- A1
  • A2 lt- MUX lt- MUX lt- A0
  • c12 lt- MUX lt- A2
  • c12 lt- MUX lt- MUX lt- A1
  • c12 lt- MUX lt- MUX lt- MUX lt- A0
  • c12 lt- MUX lt- MUX lt- MUX lt- MUX lt- cin

20
False Path
  • A1 lt- MUX lt- A0 lt- cin is a false path
  • If carry is from cin, then block must have
    p3p2p1p0 1
  • Since p3,0 1, g3,0 must be 0
  • The carry is not generated from A0
  • The carry needs not to propagate via A0, it will
    go from the MUX

21
Label Algorithm
  • Problem
  • Given a digraph, a set of false paths
  • Derive the longest path of the graph
  • Algorithm
  • Color the edges on each false path a label
  • The length of the walk of the same labels are
    accumulated
  • Otherwise, change to no label
Write a Comment
User Comments (0)
About PowerShow.com