Image Quantitation in Microarray Analysis - PowerPoint PPT Presentation

About This Presentation
Title:

Image Quantitation in Microarray Analysis

Description:

Image Quantitation in Microarray Analysis More tomorrow... Microarray analysis Array construction, hybridisation, scanning Quantitation of fluorescence signals Data ... – PowerPoint PPT presentation

Number of Views:135
Avg rating:3.0/5.0
Slides: 29
Provided by: Bria4304
Category:

less

Transcript and Presenter's Notes

Title: Image Quantitation in Microarray Analysis


1
Image Quantitationin Microarray Analysis
Moretomorrow...
2
Microarray analysis
  • Array construction, hybridisation, scanning
  • Quantitation of fluorescence signals
  • Data visualisation
  • Meta-analysis (clustering)
  • More visualisation

3
Technical
image from Jeremy Buhler
4
Experimental design
  • Track whats on the chip
  • which spot corresponds to which gene
  • Duplicate experimental spots
  • reproducibility
  • Controls
  • DNAs spotted on glass
  • positive probe (induced or repressed)
  • negative probe (bacterial genes on human chip)
  • oligos on glass or synthesised on chip
    (Affymetrix)
  • point mutants (hybridisation plus/minus)

5
Images from scanner
  • Resolution
  • standard 10?m currently, max 5?m
  • 100?m spot on chip 10 pixels in diameter
  • Image format
  • TIFF (tagged image file format)
  • can be compressed
  • (eg. Lempel-Ziv-Welch 5x compression)
  • 1cm x 1cm image at 16 bit 2Mb (uncompressed)
  • other formats exist eg. SCN (used at Stanford
    University)
  • Separate image for each fluorescent sample
  • channel 1, channel 2, etc.

6
Images in analysis software
  • Typical experiment
  • normal state, Cy3-labelled sample (green)
  • perturbed state, Cy5-labelled sample (red)
  • hybridisation, then scanning
  • overlay images ? pseudo-colour image
  • qualitative representation of results
  • Image spot colour Signal strength Gene
    expression
  • yellow normal perturbed unchanged
  • green normal gt perturbed repressed
  • red normal lt perturbed induced

7
Quantitation process (1)
  • Accurate representation of signal for each
    spotand determine ratio channel1channel2
  • Determine spot boundary
  • construct grid (dimensions of array / spot size)
  • iterative process to find spots
  • Measure signal
  • fluorescence
  • 8 bit 256 shades
  • 16 bit 65536 shades
  • absolute output values vary from system to system

8
Quantitation process (2)
  • Measure background
  • local (usually best)
  • selected region
  • selected spots / probes from different species
  • Quality control
  • eg. fraction of pixels greater than background
    (ScanAlyze)
  • flag aberrant spots
  • Determine ratio of signal strengths for each
    spot Ch1/Ch2 (Ch1I-Ch1B)/Ch2I-Ch2B)

9
Normalisation
  • Eliminate systematic variation
  • correct for
  • dye incorporation
  • print-tip effects
  • hybridisation efficiencies
  • etc.
  • How?
  • Use

STATISTICS!
10
Normalisation
  • Simple example green vs red
  • Normgreeni greeni

TotRed - TotRedB TotGreen - TotGreenB
11
Normalisation
  • More complexe
  • Within slide
  • global (constant over the slide)
  • spot intensity dependent (spot by spot)
  • within print-tip group (group by group)
  • scale (outlayers spread)
  • Between slides
  • paired-slides (dye swap)
  • Multiple slides
  • scale (slide outlayers spread)

12
Normalisation
13
Normalisation
  • Example Within slide print-tip group scaling
  • Before scaling
  • After scaling

14
Normalisation references
statistics
  • Normalization for cDNAmicroarray data
  • Yang et al. (2001)
  • In preparation
  • Statistical methods for identifyingdifferentially
    expressed genes in replicatedcDNA microarray
    experiments
  • Dudoit et al. (2000)
  • Technical report 578 Berkeley Statistics Dept.
  • Both PDFs are available from the web site of the
    course

15
Quantitation - problems
  • Reference signal is close zero
  • channels ratio (Ch1/Ch2) tends to infinity
  • Non-uniform background
  • mean background sometimes non-representative
  • bright particles
  • streaks on image
  • safer to use median (middle value)
  • less contribution by extreme values

16
Background problems
17
Background removal
18
Quantitation à la ScanAlyze
signal
background
19
ScanAlyze output
  • CH1I ch1 intensity
  • CH2I ch2 intensity
  • SPIX number of pixels in spot
  • CH1B median intensity of the local background
    (recommended)
  • CH2B median intensity of the local background
    (recommended)
  • CH1BA mean intensity of the local background
  • CH2BA mean intensity of the local background
  • BGPIX number of background pixels
  • Thus to calculate channel ratios Ch1 CH1I -
    CH1B
  • --- ----------- Ch2 CH2I - CH2B
  • Quality control
  • CH1GTB1 fraction of pixels in spot greater than
    background (CH1B)
  • CH2GTB1 fraction of pixels in spot greater than
    background (CH2B)
  • CH1GTB2 fraction of pixels in spot greater than
    1.5 X background (CH1B)
  • CH2GTB2 fraction of pixels in spot greater than
    1.5 X background (CH2B)
  • CH1EDGEA mean magnitude of the horizontal and
    vertical Sobel edge vectors within spot 1
  • CH2EDGEA mean magnitude of the horizontal and
    vertical Sobel edge vectors within spot 2

20
(No Transcript)
21
Input files for Cluster
  • Table tab delimited text, 1 line/gene, 1
    column/experiment
  • Minimal table
  • Extended table

22
Prepare data for Cluster
  • Exp1
  • Exp2

. . .
  • ExpN

23
Software packages - quantitation
  • ScanAlyze
  • by Michael Eisen (Stanford University)
  • quantitation of images
  • no data visualisation
  • free from http//rana.lbl.gov/
  • ImaGene
  • BioDiscovery Inc.
  • quantitation and some data visualisation
  • demo from http//www.biodiscovery.com/
  • plus many others - explore!

24
Making sense of raw data
  • Difficult to see results in tabulated data
  • Represent in graphical form
  • Data visualisation examples from
    ImaGene and others. . .

25
Data visualisation - scatter plot
26
Data visualisation - M vs A
27
Data visualisation - pie chart
28
  • ScanAlyze
  • quick demo
Write a Comment
User Comments (0)
About PowerShow.com