Title: Energy conversion (continued)
1Lecture 26 Energy conversion (continued) Substrate
Oxidation, Generation of reduced high-energy
intermediates and their oxidation by oxygen
2http//www.microscopyu.com/galleries/fluorescence/
cells/hela/hela.html
3Why oxygen? Electron re-distribution from less
electronegative to more electronegative atoms
occurs with massive energy release Electronegati
vity of common elements H lt C lt S lt N lt O Cl lt
F
Identify the substance and the reduction state of
the first carbon (red)
4Enthalpies of oxidation (combustion) hydrogen
(MW 2) H2 ½O2 ? H2O -286 kJ/mol (-68.4
kCal/mol) methane (MW 16) CH4 3O2 ? CO2
2H2O -891 kJ/mol (213) glucose (MW
180.2) C6H12O6 6O2 ? 6CO2 6H2O -2840
kJ/mol (-680) palmitic acid (MW
256.4) C16H32O2 31O2 16CO2 16H2O -
9730 kJ/mol (-2328)
Compare caloric capacities of the substrates
5Oxidation-reduction (Red-ox) reactions usually
lead to re-distribution of electron densities or
complete transfer of electrons resulting in
change of ionization state. Fe2 Cu2 ? Fe3
Cu or in the form of half-reactions Fe2 ?
Fe3 e Cu2 e ? Cu In biological
systems oxidation is often coupled to
dehydrogenation. 1. Direct transfer of
electrons 2. As a transfer of H atoms or removal
of H atoms coupled to production of H 3. As a
Hydride ion H 4. Through direct combination
with oxygen R-CH3 (½)O2 ? R-CH2-OH
6Reduction potentials for mixtures of
reductant/oxidant (hlf-reaction potentials) are
measured using the standard hydrogen electrode
2H 2e ? H2
Mg2 2e ? Mg (metal)
http//www.chemguide.co.uk/physical/redoxeqia/eomg
diag.gif
7Standard Reduction potentials for some
half-reactions, Volt ½ O2 2H 2e ?
H2O 0.816 Fe3 e ? Fe2 0.771 Cytochrom
e c (Fe3) e ? Cytochrome c (Fe2)
0.254 Fumarate2- 2H 2e ? succinate2- 0.031
2H 2e ? H2 (standard condition) 0 Pyruvate
2H 2e ? lactate -0.185 FAD 2H 2e ?
FADH2 -0.219 S 2H 2e ?
H2S -0.243 NAD H 2e ?
NADH -0.320 NADP H 2e ?
NADPH -0.324 a-ketoglutarate CO2 2H 2e ?
isocytrate -0.38 2H 2e ? H2 (pH 7) -0.414
Standard Reduction potentials for some
half-reactions, Volt ½ O2 2H 2e ?
H2O 0.816 Fe3 e ? Fe2 0.771 Cytochrom
e c (Fe3) e ? Cytochrome c (Fe2)
0.254 Fumarate2- 2H 2e ? succinate2- 0.031
2H 2e ? H2 (standard condition,
pH0) 0 Pyruvate 2H 2e ? lactate -0.185 FAD
2H 2e ? FADH2 -0.219 S 2H 2e ?
H2S -0.243 NAD H 2e ?
NADH -0.320 NADP H 2e ?
NADPH -0.324 a-ketoglutarate CO2 2H 2e ?
isocytrate -0.38 2H 2e ? H2 (pH 7) -0.414
8NADH H ½ O2 ? NAD H2O
NAD H 2e ? NAD -0.320 V
½ O2 2H 2e ? H2O 0.816 V
total difference 1.14 V
DG -nFEo -220 kJ/mol
9(No Transcript)
10(No Transcript)
11Stage 1 (in the cytosol)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15NAD
NAD H 2e- NADH
half reaction (-0.32 V)
FAD has smaller reducing potential (-0.219 V) so
its reduction can be coupled to a less
energetically favorable oxidation reaction
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22Beta-Oxidation of fatty acids
R CH3-(CH2)n-
R CH3-(CH2)n-2-
23When succinate and oxygen are given to
mitochondria, they release H
24Electron transport chain
Complex I II
III IV
Energy released in forming water is stored as a
PMF Energy is divided into smaller units 10-12
protons per water molecule
25Iron-sulfur cluster (Fe-S)
Heme
26(No Transcript)
27CoQ accepts both electrons and protons
28(No Transcript)
29(No Transcript)
30(No Transcript)
31Why add valinomycin?
32What conditions are necessary for the experiment
to work?
- poorly-buffered medium
- Valinomycin/potassium
- A substrateNOT NADHas stated in your book
Is ATP synthesis the reason for the pH returning
to the original value?...
33(No Transcript)
34Oxidation rate is slow
Why?
Oxidation rate is fast
Why?
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40(No Transcript)