A high-power, beam-based, coherently enhanced THz radiation source - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

A high-power, beam-based, coherently enhanced THz radiation source

Description:

A high-power, beam-based, coherently enhanced THz radiation source Yuelin Li, Yin-E Sun, and Kwang-Je Kim Accelerator Systems Division Argonne Accelerator Institute – PowerPoint PPT presentation

Number of Views:83
Avg rating:3.0/5.0
Slides: 17
Provided by: anl94
Category:

less

Transcript and Presenter's Notes

Title: A high-power, beam-based, coherently enhanced THz radiation source


1
A high-power, beam-based, coherently enhanced
THz radiation source
  • Yuelin Li, Yin-E Sun, and Kwang-Je Kim
  • Accelerator Systems Division
  • Argonne Accelerator Institute
  • Argonne National Laboratory, Argonne, IL 60439

We propose a Smith-Purcell radiation device that
can potentially generate high average power THz
radiation with very high conversion efficiency.
The source is based on a train of short electron
bunches from an rf photoemission gun at an energy
of a few MeV. Particle tracking simulation and
analysis show that with a beam current of 1 mA,
it is feasible to generate hundreds of Watts of
narrow-band THz radiation at a repetition rate of
1 MHz.
2
Content
  • Power of THz imaging
  • Capability of current available source
  • Our Approach of THz generation
  • Coherence enhancement
  • Laser pulse train generation
  • E-beam generation and dynamics
  • Smith-Purcell radiation
  • Putting together
  • Challenges
  • Summary

3
Current sources
  • Broadband, THz TDS, lt650 mW
  • CW
  • Gunn diode/Back wave oscillators, lt200 mW
  • THz-wave parametric oscillators, lt100 mW
  • THz gas lasers, lt180 mW
  • QCL, lt100 mW
  • FEL, gt20 W, but bulky

mW, 8 min H. B. Liu et al, Proc. IEEE 95, 1515
(2007).
Higher power is needed field application.
4
The matter of coherence
Radiation power from a electron bunch
Coherent radiation
Incoherent radiation
dE/dw electron radiation energy into per
spectral frequency N total number of electrons
Coherence factor
S(t) electron temporal distribution
5
Coherence factor as a function of bunch length
Short bunch is the key for high coherent
factor! Y.Li and K.-J. Kim, Appl. Phys. Lett. 92,
014101 (2008).
6
Degradation of coherence factors in electron
bunches
Energy from zero to 8 MeV (see later)
The degradation is due to space charge force.
7
Effect of the space charge force
Q total charge sz, sr longi and trans beam
sizes g relativistic factor
To solve the problem Higher beam energy, costly
on Less charge, costly on photons
How about bunch train? Reduced space charge but
preserved coherence factor.
8
Preserve the coherence factor by bunch trains
Coherence factor for a bunch train
scoh coherence factor for individual
bunched tb bunch spacing, to be set as
2p/w Nb Number of bunches
9
Preserve the coherence factor by bunch trains
Same coherence factor but narrower band width
Coherent factor as a function of frequency for
1-16 bunches
10
Laser pulse train generation
(Credit Cialdi et al., Appl. Phys. 46, 4959
(2007))
Number of pulses 2n, n is the number of
birefringence crystals
11
Rf photoinjector
L/S band gun
Klystron
Laser
  • Need high duty factor, kHz to MHz
  • Laser power of 100 W
  • Klystron power 10 kW

12
Simulation for an rf gun bunch coherent factor
Coherence fator at harmonics
13
Smith-Purcell radiation
(Credit Scott Berg, http//www.cap.bnl.gov/spexp/
)
Resonant wavelength
Radiation power per electron
Ng, lg number of grating grooves and grating
period. le evanescent wavelength n
diffraction order
S.J. Smith and E. M. Purcell, Phys. Rev. 92, 1069
(1953). P.M. van den Berg, J. Opt. Soc. Am. 63,
1588 (1973).
14
Putting things together radiation powers at 1
MHz, for 0.5 THz
grating
THz
total radiation power as a function of the beam
center-grating distance with a beam scraper
height D in mm measured from the grating surface.
15
Summary
Can we make a THz source like this?
http//www.tfot.info/news/1051/boeing-tests-avenge
r-solid-state-laser-weapon.html
  • We showed that with coherence enhancement, a beam
    based source delivering hundreds of watts of THz
    power is possible and may be made compact for
    field application tools.

16
References
  • B. Ferguson and X.C. Zhang, Nature Materials 1,
    26 (2002).
  • K. Kawase, J. Shikata, K. Imai, and H. Ito, Appl.
    Phys. Lett. 78, 2819 (2001).
  • See, for example, D. Abbott and X.-C Zhang, Proc.
    IEEE 95, 1509 (2007) and the references therein.
  • G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan,
    G.R. Neil, and G.P. Williams, Nature 420, 153
    (2002).
  • S.V. Miginsky, N.A. Vinokurov, D.A. Kayran, B.A.
    Knyazev, E.I. Kolobanov, V.V. Kotenkov, V.V.
    Kubarev, G.N. Kulipanov, A.V. Kuzmin, A.S.
    Lakhtychkin, A.N. Matveenko, L.E. Medvedev, L.A.
    Mironenko, A.D. Oreshkov, V.K. Ovchar, V.M.
    Popik, T.V. Salikova, S.S. Serednyakov, A.N.
    Skrinsky, O.A. Shevchenko, M.A. Scheglov, Proc of
    2007 Asian Patical Accelerator Conference,
    Indore, India.
  • J.S. Nodvick and D.S. Saxon, Phys. Rev. 96, 180
    (1954).
  • Y.K. Batygin, Phys. Plasmas 8, 3103 (2001).
  • B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D.
    Miller, J. Appl. Phys. 92, 1643 (2002).
  • A.M. Michalik and J.E. Sipe, J. Appl. Phys. 99,
    054908 (2006).
  • Y.Li and K.-J. Kim, Appl. Phys. Lett. 92, 014101
    (2008).
  • S.E. Korbly, A.S. Kesar, J.R. Sirigiri, and R.J.
    Temkin, Phys. Rev. Lett. 94, 054803 (2005).
  • M. Arbel, A. Abramovich, A. L. Eichenbaum, A.
    Gover, H. Kleinman, Y. Pinhasi, and I. M.
    Yakover, Phys. Rev. Lett. 86, 2561 (2001), and
    references therein.
  • http//www.pulsar.nl/gpt.
  • http//tesla.desy.de/lfroehli/astra/
  • S.J. Smith and E. M. Purcell, Phys. Rev. 92, 1069
    (1953).
  • P.M. van den Berg, J. Opt. Soc. Am. 63, 1588
    (1973).
  • H.L. Andrews and C.A. Brau, Phys. Rev. ST AB 7,
    070701 (2004).
  • M. Boscolo, M. Ferrario,I. Boscolo, F. Castelli,
    and S. Cialdi, Nucl. Instr. and Meth. Phys. Res.
    A 577(3), 409 (2007).
  • J.G. Neumann, P.G. O'Shea, D. Demske, W.S.
    Graves, B. Sheehy, H. Loos and G.L. Carr, Nucl.
    Instr. Meth. Phys. Res. A 507, 498 (2003).
Write a Comment
User Comments (0)
About PowerShow.com