Title: Fig. 9-2
1Fig. 9-2
Light energy
ECOSYSTEM
Photosynthesis in chloroplasts
Organic molecules
CO2 H2O
O2
Cellular respiration in mitochondria
ATP
ATP powers most cellular work
Heat energy
2Fig. 9-UN1
becomes oxidized (loses electron)
becomes reduced (gains electron)
3Fig. 9-5
1/2 O2
H2 1/2 O2
2 H
(from food via NADH)
Controlled release of energy for synthesis of ATP
2 H 2 e
ATP
Explosive release of heat and light energy
ATP
Electron transport chain
Free energy, G
Free energy, G
ATP
2 e
1/2 O2
2 H
H2O
H2O
(a) Uncontrolled reaction
(b) Cellular respiration
4Fig. 9-6-1
Electrons carried via NADH
Glycolysis
Glucose
Pyruvate
Cytosol
ATP
Substrate-level phosphorylation
5Fig. 9-9-1
Glucose
ATP
1
Hexokinase
ADP
Glucose
Glucose-6-phosphate
ATP
1
Hexokinase
ADP
Glucose-6-phosphate
6Fig. 9-9-2
Glucose
ATP
1
Hexokinase
ADP
Glucose-6-phosphate
Glucose-6-phosphate
2
Phosphoglucoisomerase
2
Phosphogluco- isomerase
Fructose-6-phosphate
Fructose-6-phosphate
7Fig. 9-9-3
Glucose
ATP
1
1
Hexokinase
ADP
Fructose-6-phosphate
Glucose-6-phosphate
2
2
Phosphoglucoisomerase
ATP
3
Phosphofructo- kinase
Fructose-6-phosphate
ATP
ADP
3
3
Phosphofructokinase
ADP
Fructose- 1, 6-bisphosphate
Fructose- 1, 6-bisphosphate
8Fig. 9-6-1
Electrons carried via NADH
Glycolysis
Glucose
Pyruvate
Cytosol
ATP
Substrate-level phosphorylation
9Fig. 9-6-2
Electrons carried via NADH and FADH2
Electrons carried via NADH
Citric acid cycle
Glycolysis
Glucose
Pyruvate
Mitochondrion
Cytosol
ATP
ATP
Substrate-level phosphorylation
Substrate-level phosphorylation
10Fig. 9-10
CYTOSOL
MITOCHONDRION
NAD
NADH
H
2
1
3
Acetyl CoA
Coenzyme A
Pyruvate
CO2
Transport protein
11Fig. 9-11
Pyruvate
CO2
NAD
CoA
NADH
H
Acetyl CoA
CoA
CoA
Citric acid cycle
CO2
2
FADH2
3 NAD
NADH
3
FAD
3 H
ADP
P
i
ATP
12Fig. 9-12-8
Acetyl CoA
CoASH
NADH
H2O
1
H
NAD
Oxaloacetate
8
2
Malate
Citrate
Isocitrate
NAD
Citric acid cycle
NADH
3
H
7
H2O
CO2
Fumarate
CoASH
?-Keto- glutarate
4
6
CoASH
5
FADH2
CO2
NAD
FAD
Succinate
NADH
P
i
H
Succinyl CoA
GDP
GTP
ADP
ATP
13Fig. 9-6-2
Electrons carried via NADH and FADH2
Electrons carried via NADH
Citric acid cycle
Glycolysis
Glucose
Pyruvate
Mitochondrion
Cytosol
ATP
ATP
Substrate-level phosphorylation
Substrate-level phosphorylation
14Fig. 9-6-3
Electrons carried via NADH and FADH2
Electrons carried via NADH
Oxidative phosphorylation electron
transport and chemiosmosis
Citric acid cycle
Glycolysis
Glucose
Pyruvate
Mitochondrion
Cytosol
ATP
ATP
ATP
Substrate-level phosphorylation
Substrate-level phosphorylation
Oxidative phosphorylation
15Fig. 9-13
NADH
50
e
2
NAD
FADH2
2
e
FAD
Multiprotein complexes
?
FAD
40
FMN
??
FeS
FeS
Q
???
Cyt b
FeS
30
Cyt c1
IV
Free energy (G) relative to O2 (kcal/mol)
Cyt c
Cyt a
Cyt a3
20
e
2
10
(from NADH or FADH2)
O2
2 H 1/2
0
H2O
16Fig. 9-16
H
H
H
H
Protein complex of electron carriers
Cyt c
?V
Q
???
?
ATP synthase
??
H2O
2 H 1/2O2
FADH2
FAD
NAD
NADH
ADP
ATP
P
i
(carrying electrons from food)
H
Chemiosmosis
Electron transport chain
2
1
Oxidative phosphorylation
17Fig. 9-17
Electron shuttles span membrane
MITOCHONDRION
CYTOSOL
2 NADH
or
2 FADH2
2 NADH
2 NADH
6 NADH
2 FADH2
Oxidative phosphorylation electron
transport and chemiosmosis
Glycolysis
Citric acid cycle
2 Acetyl CoA
2 Pyruvate
Glucose
2 ATP
2 ATP
about 32 or 34 ATP
About 36 or 38 ATP
Maximum per glucose
18Fig. 9-6-3
Electrons carried via NADH and FADH2
Electrons carried via NADH
Oxidative phosphorylation electron
transport and chemiosmosis
Citric acid cycle
Glycolysis
Glucose
Pyruvate
Mitochondrion
Cytosol
ATP
ATP
ATP
Substrate-level phosphorylation
Substrate-level phosphorylation
Oxidative phosphorylation