Inference Rules for Quantified Propositions - PowerPoint PPT Presentation

About This Presentation
Title:

Inference Rules for Quantified Propositions

Description:

... is true for arbitrary c in the universe of discourse. This can be written: x, P(x) _____ P(c) for all c. Example: M(x): x is mortal. – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 14
Provided by: PeterC228
Category:

less

Transcript and Presenter's Notes

Title: Inference Rules for Quantified Propositions


1
Inference Rules for Quantified Propositions
2
Universal Specification
  • If a statement of the form ?x, P(x) is true, then
    P(c) is true for arbitrary c in the universe of
    discourse.
  • This can be written
  • ?x, P(x)
  • ________
  • ? P(c) for all c.
  • Example M(x) x is mortal. From ?x, M(x), we
    infer that Socrates is mortal.

3
Universal Generalization
  • If a statement P(c) is true for each element c of
    the universe, then ?x, P(x).
  • This can be written
  • P(c) for all c
  • ________
  • ? ?x, P(x).

4
Example of Universal Generalization
  • Prove if R is an antisymmetric relation, so is
    R-1.
  • Let xRy be an arbitrary element of R where x ? y.
  • yR-1x. (Defn. of inverse relation.)
  • (y,x) ? R. (R is antisymmetric)
  • (x,y) ? R-1. (Step 3 defn. of inverse
    relation.)
  • ?(x,y), (xR-1y ? yR-1x) ? x y. (UG)
  • R-1 is antisymmetric. (Step 5 defn. of
    antisymmetric)

5
Existential Specification
  • If ?x, P(x) is true then there is an element c
    such that P(c) is true.
  • This can be written
  • ?x, P(x)
  • ________
  • ? P(c), for some c.
  • Element c is not arbitrary.
  • We know only that some c satisfies P.
  • We do not necessarily know which one (e.g., from
    a non-constructive proof).

6
Existential Generalization
  • If P(c) is true for some c, then ?x, P(x).
  • This can be written
  • P(c), for some c
  • ________
  • ? ?x, P(x).

7
Protocol
  • To infer from quantified premises
  • Properly remove quantifiers.
  • Use existential or universal specification
  • Argue with the resulting propositions.
  • Properly prefix the correct quantifiers.
  • Use existential universal generalization

8
Example arguments
  • All humans are fallible.
  • All government agents are human.
  • Therefore, all government agents are fallible.
  • ______________________
  • H(x) x is a human.
  • F(x) x is fallible.
  • G(x) x is a government agent.

9
  • ?x, ( H(x) ? F(x) ).
  • ?x, ( G(x) ? H(x) ).
  • _________________
  • ?x, ( G(x) ? F(x) ).

10
  • Proof
  • 1. ?x, ( H(x) ? F(x) ) premise 1
  • 2. H(c) ? F(c) step 1 U.S.
  • 3. ?x, ( G(x) ? H(x) ). premise 2
  • 4. G(c) ? H(c) step 3 U.S.
  • 5. G(c) ? F(c) steps 2, 4, transitivity
  • 6. ?x, ( G(x) ? F(x) ). step 5 U.G.

11
  • In English
  • All CCS classes are easy.
  • This is a CCS class.
  • Therefore, this class is easy.
  • A more compact representation
  • ?x, C(x) ? E(x).
  • C(CCS CS 2).
  • Therefore, E(CCS CS 2).

12
Proof
  • 1. ?x, C(x) ? E(x) premise 1
  • 2. C(CCS CS 2) ? E(CCS CS 2) step 1, U.S.
  • 3. C(CCS CS 2) premise 2
  • 4. E(CCS CS 2) step 2, 3, modus
    ponens

13
Characters
  • ? ? ? ?
  • ? ? ? ? ? ? ?
  • ? ? ?
  • ? ? ? ? ? ? ?
  • ? ? ? ? ? ? ? ? ?
  • ALL ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Write a Comment
User Comments (0)
About PowerShow.com