Title: The disk of AB Aurigae
1The disk of AB Aurigae
Dmitry Semenov (MPIA, Heidelberg,
Germany)
Yaroslav Pavluchenko (INASAN, Moscow,
Russia)
Katharina Schreyer (AIU,
Jena, Germany)
Thomas Henning (MPIA, Heidelberg,
Germany)
Kees Dullemond (MPA,
Garching, Germany)
Aurore Bacmann (Observatoire de Bordeaux,
France)
Ringberg April 15
2The disk of AB Aurigae
Chemical modeling Dmitry Semenov
Observations
Aurore Bacmann (Observatoire de Bordeaux,
France) Katharina Schreyer
(AIU Jena)
(MPIA Heidelberg)
Radiative transfer Lines
Yaroslav Pavluchenko (INASAN, Moscow, Russia)
Continuum Kees Dullemond (MPA, Garching,
Germany)
Ringberg April 15
3Outline
- Motivation
- General Properties
- Observations Results
- a) IRAM 30m b) PdBI
- The Model of the AB Aurigae system
- Chemical modeling
- Line radiative transfer simulations
- Modeling results
- Conclusions
3/18
4Motivation
- Why AB Aurigae ?
- One of the best-studied Herbig Ae(/Be) stars A0
Vesh - D 144 23 pc, M? 2.4 0.2 M8, age
2-5 Myr - (e.g. van den Ancker et al. 1997, Manning
Sargent 1997, Grady et al. 1999, - deWarf et al. 2003, Fukagawa et al. 2004)
- circumstellar structure
- compact disk (Rdisk 450 pc, Mdisk 0.02 M8,
- i,f poorly defined)
- (Mannings Sargent 1997,
Henning et al. 1998) - extended, low-density envelope
- (R gt 1000 pc, optically
thin, AV 0.5m - internal
structure extent not well determined)
? ?
-17
? well suitable object to study the chemistry of
the disk
5R-band image, University of Hawaii 2.2m
telescope (Grady et al. 1999)
AB Aur General Properties The envelope
IRAS 60µm
?
- ? extended
- asymmetrical
- nebulosity,
- inhomogeneous
- spherical
- envelope,
- Renvelope
- 1300 AU ( 10?)
- i lt 45o
HST visual image (Grady et al. 1999)
- ? IRAS 60 µm map
- ? Renvelope 4 35 000 AU
- SED Modeling (Miroshnichenko
- et al. 1999) ? Renvelope 5000 AU
N E
10?
6AB Aurigae General Properties - The disk
13CO (1?0) OVRO
Main velocities
Subaru H-band image (Fukagawa et al. 2004) mass
supply from the envelope contributes to the
spiral instability
4.5 5 5.5 6
6.5 vLSR (km s-1)
5?
5 0
-5 arcsec
(Mannings Sargent, 1997, OVRO) Keplerian
rotation, a/b ? 110 AU / 450 AU ? i ? 76o
8?
8?
HST image (Grady et al. 1999)
7AB Aur - Our observational results IRAM 30m
Observations
- 2000-2001
- beamsizes
- 10? - 30?
- Results
- detected
- species
- HCO, CS,
- CO, C18O,
- HCN, HNC,
- 3? SiO,
- H2CO, CN,
- DCO
CS 5?4
CO 2?1
C18O 2?1
CS 2?1
0 5 10
0 5 10
0 5 10
0 5 10
HCO 1?0
HCO 3?2
Tmb K
0 10 20
-10 0 10 20
0 5 10
-5 0 5 10 15
SiO 2?1
H2CO 31,2?21,1
CN 1?0
? non-detections N2H, CH3CN, HDCO, C2H,
SO, SO2
0 5 10
0 5 10
0 5 10
0 5 10
vLSR km/s
7/18
8AB Aur - Our observational results
PdB Interferometer
sum
HCO J1-0
Beam 6.5? x 5?
Observations 2002, beams 5? x 7?
Main velocities
Results HCO map, 3? 34SO, SO2, HCN,
C2H,
HST image Grady et al. 1999
34SO 32?21
SO2 73,5?82,6
S?Jy
HCN 1?0
velocity km/s
9The model of the AB Aur system
(Dullemond Dominik, 2004)
- 2D continuum radiative
- transfer code
- ? passive flared disk model
- low-density cones have
- the open angle ?
- shadowed part
- of the envelope
- is denser and cooler
R
9/18
10The model of the AB Aur system
Disk 2D passive disk with vertical
temperature gradient, ?(r) ?o(r / Ro)p,
p -1.5, Mdisk 3 ( 0.5) 10-2 M8, Rin
Ro 0.7 AU, Rout 400 AU, vertical hight
0.3 350 AU i 173, ? 80 10,
Tdisk 35 ... 1500 K ndisk 10-24 ... 10-9 g
cm-3, Keplerian rotation, Vturb 0.2
km/s Envelope Rin 0 / 400 AU, Rout 2100
AU, ? (r) ?o(r / Rin
)p, p -1.0, low-density cones ? 25,
?olobe 9.4 10-20 g cm-3, Tenv 100 K
shadowed torus ?olobe 5.5
10-19 g cm-3, Tenv 35 K Menv ? 4 10-3
M8, ad 0.1 µm, AV 0.5m, Vturb 0.2
km/s, stationary accretion, V(r) ? 1 / r
(0.2 km/s at r Rin), dynamical
timescale is 107 yrs
ad 0.3 µm
-30
400 AU
10/18
11AB Aur Chemical Modeling
(Semenov et al., 2004)
- ? a gas-phase chemistry (UMIST95) with a surface
reaction set - (Hasegawa et al. 1992)
- ? a deuterated chemical network from Bergin et
al. 1999 - ? self- mutual-shielding of H2 (Draine
Bertoldi 1996) and - CO (Lee et al. 1996)
- ? the 1D slab model to compute UV- and
CR-dissociation and - ionization rates depending on vertical
height - ? ionization by the decay of radionuclides
(disk) - ? thermal, photo-, and CR-desorption of surface
species back - in the gas-phase
- ? initial abundances chemical evolution of a
molecular cloud (low-metal - set, T 10 K, n 2104 cm-3, time
span 1Myr, Wiebe et al. 2003)
11/18
12AB Aur Chemical Modeling
- Modeling of the chemistry ? with reduced
chemical network - (in total 560 species made of 13 elements,
involved in 5335 reactions) - On the basis of the fractional ionisation, disk ?
divided into - three layers
- dark dense mid-plane
- (chemical network of ten species
reactions) - (ii) intermediate layer
- (chemistry of the fractional ionization
driven - by the stellar X-rays)
- (iii) unshielded low-density surface layer
- (photoionisation-recombination processes)
? ?
Results
2D-distribution of column densities and
molecular abundances for 3 Myr evolutionary
time span
12/18
13AB Aur - Line radiative transfer
(Pavluchenkov Shustov, 2004)
- 2D URAN NLTE code further development
- of the public 1D code by Hogerheijde
- van der Tak (2000)
- solution of the system of radiative transfer
equations - using the Accelerated ?Iteration (ALI)
method - the mean intensities are calculated with the
- Accelerated Monte Carlo algorithm
- the same model as obtained by the continuum
radiative - transfer
- synthetic line profiles,
beam-convolved
Results
13/18
14Modeling Results ???(1-0) disk map
AB Aurigae
4 3 2 1 0 -1 -2 -3 -4
- Inverse P Cygni profile
- a possible evidence
- for the accretion at distances 600 AU
Disk model R 400 AU
-4 -3 -2 -1
0 1 2 3 4
arcsec
14/18
15Modeling Results ???(1-0) disk map
AB Aurigae
Subaru H-band image
disk model Fukag
awa et al. 2004
4 3 2 1 0 -1 -2 -3 -4
? sub-component structures possibly stem from
the spirals
-4 -3 -2 -1
0 1 2 3 4
arcsec
15/18
16 Modeling Results Estimate of i and ?
i 10o i 15o
i 20o
AB Aurigae
? inclination angle of the disk ?
i 17 3 ? position angle ? ?
8010
? 40o ? 80o
? 120o
-30
16/18
17AB Aur -Modeling Results Line profiles
of different species Fit for three
cases Left Middle Right
Tmb K
only the disk only the envelope disk
envelope
? ?
? ?
(J2-1)
17/18
18AB Aurigae - Conclusions
- Based on observational data ? a suitable model
of the - AB Aurigae system is acquired
- ? mass, size, geometry and dynamical
structure - ? temperature and density distribution
- There is an evidence for the accretion at
distances of - about 600 AU from the star
- It is shown that the IRAM single-dish spectra can
be adequately described by the disk-in-envelope
model - The coupled dynamical, chemical, and radiative
transfer - simulation is an effective tool to find a
consistent model
18/18
19(No Transcript)
20(No Transcript)
21AB Aur - Our observations
IRAM 30m 2000-2001, beam sizes 10? -
30? detected different transitions of HCO,
CS, CO, C18O, HCN, HNC, 3? SiO, H2CO, CN,
DCO non-detections N2H, CH3CN, HDCO, C2H,
SO, SO2
IRAM
Plateau de Bure Interferometer 2002, synthezied
beam sizes 5?7? detected HCO ( 3? 34SO,
SO2, HCN, C2H, )
PdBI
7/19
22AB Aurigae - Conclusions
- About a dozen molecular spectra as well as the
HCO(1-0) interferometric map of AB Aurigae are
acquired - There is an evidence for the accretion at
distances of about 600 AU from the star - The mass, size, geometry and dynamical structure
of the disk are constrained - The temperature and density distribution of the
envelope are estimated - It is shown that the IRAM single-dish spectra can
be adequately described by the disk-in-envelope
model - Further investigations are needed
18/18
23AB Aur - Line radiative transfer
(Pavluchenkov Shustov, 2004)
2D URAN NLTE code further development of
the public 1D code by Hogerheijde van der
Tak (2000)
- System of equations including the equation of
radiative transfer and statistical equations for
the level populations - Mean intensity in every cell is calculated by the
accelerated Monte-Carlo technique (AMC) - Level populations are iteratively calculated
using the Accelerated Lambda Iteration (ALI)
scheme - Global iterations are finished after a requested
accuracy in level populations is achieved
13/18
24(No Transcript)
25Modeling Results ???(1-0) disk map
AB Aurigae
Subaru R-band image Fukagawa et al.
2004
4 3 2 1 0 -1 -2 -3 -4
? sub-component structures possibly stem from
the spirals
-4 -3 -2 -1
0 1 2 3 4
arcsec
15/18
26HCO(1-0) 29
24
27HCO(3-2) 9.3
Disk Envelope
Both
25
28CO(2-1) 11
Disk Envelope
Both
26
29C18O(2-1) 11
Disk Envelope
Both
27
30CS(2-1) 26
Disk Envelope
Both
28
31Mass of the disk
21
32Mass of the disk
22
33AB Aurigae General properties
3
34The AB Aurigae system IR
IRAS 60?m map ? radius of the envelope 35000 AU
4
35The AB Aurigae system visual
(Grady et al. ApJ, 523, 151, 1999)
Scattered light image ? extended asymmetrical
nebulosity
5
36AB Aur General Properties - The envelope
HST K-band image (Grady et al. 1999)
inhomogeneous spherical envelope, Rdisk ? 1300
AU ? i lt 45o
37The AB Aurigae system 10?m
The shape of the 10?m-silicate band implies that
adlt1?m (Bouwman et al. AA, 375, 950, 2001)
8
38Results PdB Interferometer
Keplerian rotation, positional angle ? ? 90? ?
39Chemical processes in space
Grain
15
40Disk positional angle
20
41HCO(1-0) 29
42Temperature of the envelope
43AB Aurigae General Properties - The disk
Subaru H-band image (Fukagawa et al. 2004) mass
supply from the envelope contributes to the
spiral instability
(Mannings Sargent, 1997) Keplerian rotation,
a/b ? 110 AU / 450 AU ? i ? 76o
8?
8?
HST image (Grady et al. 1999)
44AB Aur - Our observational results
PdB Interferometer
Main velocities
4.5 5 5.5 6
6.5 vLSR (km s-1)
Keplerian rotation, position angle ? ? 90? ?
34SO 32?21
SO2 73,5?82,6
S?Jy
HCN 1?0
45The model of the AB Aur system
(Dullemond Dominik, 2004)
- 2D continuum radiative
- transfer code
- ? passive flared disk model
- low-density cones have
- the open angle ?
- shadowed part
- of the envelope
- is denser and cooler
R
9/18