Title: 2.3 Synthetic Substitution
12.3 Synthetic Substitution
- OBJ ? To evaluate a polynomial for given values
of its variables using synthetic substitution
2Top P 38 EX ? P ( 2 ) P 3 x 3 10 x 2 5x
4
- 2 3 10 -5 -4
- ?_____________
- 3
- 2 3 10 -5 -4
- ? 6_________
- 3 16
- 2 3 10 -5 -4
- ? 6 32____
- 3 16 27
- 2 3 10 -5 -4
- ? 6 32 54
- 3 16 27 50
- 3 x3 10 x2 5x 4
- 3(2)3 10(2)25(2)4
- 3(8) 10(4) 10 4
- 24 40 10 4 50
- P ( 2 ) 50
3P 38 EX 2 ? 2 x 4 x 3 5x 3
- x -2
- -2 2 -1 0 5 3
- ?
- 2________________
- -2 2 -1 0 5 3
- ? -4
- 2 -5___________
- -2 2 -1 0 5 3
- ? -4 10
- 2 -5 10_______
- -2 2 -1 0 5 3
- ? -4 10 -20
- 2 -5 10 15 33
- x 3
- 3 2 -1 0 5 3
- ?________________
- 2
- 3 2 -1 0 5 3
- ? 6___________
- 2 5
- 3 2 -1 0 5 3
- ? 6 15_______
- 2 5 15
- 3 2 -1 0 5 3
- ? 6 15 45____
- 2 5 15 50 153
4EX 3 ? 3 x 4 2x 2 6x 10
- 2 3 0 -2 -6 10
- ?
- 3_______________
- 2 3 0 -2 -6 10
- ? 6
- 3 6_____________
- 2 3 0 -2 -6 10
- ? 6 12
- 3 6 10_________
- 2 3 0 -2 -6 10
- ? 6 12 20 28
- 3 6 10 14 38
- -2 3 0 -2 -6 10
- ?________________
- 3
- -2 3 0 -2 -6 10
- ? -6_____________
- 3 -6
- -2 3 0 -2 -6 10
- ? -6 12________
- 3 -6 10
- -2 3 0 -2 -6 10
- -6 12 -20 52
- 3 -6 10 -26 62
5DEF ? Remainder Theorem
- When synthetic
- division is done to a
- polynomial for a
- specific value, the
- remainder is the same
- as if the polynomial
- was evaluated at that
- value.
- The remainder when a
- polynomial is
- synthetically divided
- by a is equal to
- the value when the
- polynomial is
- evaluated with the .
6EX 4?P(x)x5 3x4 3x3 5x2 12
- 2 1 -3 3 -5 0 12
- ?
- 1________________
- 2 1 -3 3 -5 0 12
- ? 2
- 1 -1_____________
- 2 1 -3 3 -5 0 12
- ? 2 -2
- 1 -1 1__________
- 2 1 -3 3 -5 0 12
- ? 2 -2 2 -6 -12
- 1 -1 1 -3 -6__ 0 __
- -1 1 -1 1 -3 -6 0
- ?
- 1__________________
- -1 1 -1 1 -3 -6 0
- ? -1
- 1 -2_______________
- -1 1 -1 1 -3 -6 0
- ? -1 2
- 1 -2 3___________
- -1 1 -1 1 -3 -6 0
- ? -1 2 -3 6
- 1 -2 3 -6__0 ____
- 1x32x23x 6 0
7DEF ? Factor Theorem
- When synthetic
- division is done to a
- polynomial for a
- specific value (c) and
- the remainder is 0,
- then (x c) is a factor.
- If a polynomial is
- synthetically divided
- by a and the
- remainder is 0, then
- x is a factor.
815.8 Higher-Degree Polynomial Equations
- OBJ ? To find the zeros of an integral
polynomial - ? To factor an integral
polynomial in one variable - into first-degree factors
- ? To solve an integral polynomial
equation of degree gt2
9- DEF ? Integral Polynomial
- DEF ? Zero of a polynomial
- DEF? Integral Zero Theorem
-
- A polynomial with all
- integral coefficients
- A that if evaluated in a
- polynomial would
- result in a 0 as the
- remainder
- The integral zeros of a
- polynomial are the
- integral factors of the
- constant term, called p
10EX 1 ? If P(x) 2x4 5x3 11x2 20x 12has
two first degree factors (x 2) and (x 3),
find the other two. Top P 409
- 2 2 5 -11 -20 12
- 2________________
- 2 2 5 -11 -20 12
- ? 4
- 2 9_____________
- 2 2 5 -11 -20 12
- ? 4 18
- 2 9 7 _________
- 2 2 5 -11 -20 12
- ? 4 18 14
- 2 9 7 -6____
- 2 2 5 -11 -20 12
- ? 4 18 14 -12
- 2 9 7 -6 0
- -3 2 9 7 -6 0
- ?
- 2_________________
- -3 2 9 7 -6
- ? -6
- 2 3______________
- -3 2 9 7 -6
- ? -6 -9
- 2 3 -2 0____
- 2x2 3x 2
- (2x 1)(x 2)
11P 410 HW 2 P 411 (1-19 odd)EX 1 P(x) x4 x3
8x2 2x 12
- 1, 2, 3, 4, 6, 12
- Use calculator table to find the zeros
- 3 1 -1 -8 2 12
- ?________________
- 1________________
- 3 1 -1 -8 2 12
- 3______________
- 1 2______________
- 3 1 -1 -8 2 12
- 3 6__________
- 1 2 -2__________
- 3 1 -1 -8 2 12
- 3 6 -6_____
- 1 2 -2 -4_____
- -2 1 2 -2 -4 0
- ?_________________
- 1_________________
- -2 1 2 -2 -4 0
- ? -2_____________
- 1 0_____________
- -2 1 2 -2 -4 0
- ? -2 0_________
- 1 0 -2_________
- -2 1 2 -2 -4 0
- ? -2 0 4_____
- 1 0 -2 0_____
- x2 2 0
- x v2
12P410 EX 2 ? x 4 5x 2 36 0
- 1, 2, 3, 4, 6, 9, 12, 18, 36
- Use calculator table to find the
- zeros.
- 3 1 0 -5 0 -36
- 1
- 3 1 0 -5 0 -36
- ? 3
- 1 3
- 3 1 0 -5 0 -36
- ? 3 9
- 1 3 4
- 3 1 0 -5 0 -36
- ? 3 9 12
- 1 3 4 12
- -3 1 3 4 12
- ?
- 1
- -3 1 3 4 12
- ? -3
- 1 0
- -3 1 3 4 12
- ? -3 0
- 1 0 4 0
- x2 4 0
- x 2i
13EX 4 ? P(x) 2x3 17x2 40x 16
- 1, 2, 4, 8, 16
- Use calculator table to
- find the zeros.
- 4 2 -17 40 -16
- ?
- 2
- 4 2 -17 40 -16
- ? 8
- 2 -9
- 4 2 -17 40 -16
- ? 8 -36
- 2 -9 4
- 2 -9 4 0
- 2x2 9x 4
- (2x 1)(x 4)
14Note the following 3 facts
- 1) Degree of polynomial is 3 and 3 factors
- 2) 2 distinct zeros, 4 a multiplicity of two
- 3) 3 unique factors 2(x 1/2)(x 4)(x 4)
- constant of 2, coefficient of first term
1515.9 Rational Zero Theorem
- OBJ ? To find the zeros of an integral
polynomial using the rational zero theorem
16DEF ? Rational Zero Theorem
- If p is a factor of the constant term and q
- is a factor of the highest degree term,
- than p/q are the possible rational zeros of
- polynomial.
17P 413 HW 3 P 415 (5-8) EX
1P(x) 6x4 x3 14x2 2x 4
- 1, 2, 4, ½, ?, ?, 1 ? , 1/6
- -1/2 6 -1 -14 2 4
- -3 2 6 -4
- 2/3 6 -4 -12 8 0
- 4 0 -8
- 6 0 -12 0
- 6x2 12
- x v2
18EX 2 ? 6x 4 7x 3 3x 2 7x 3
- 1, 3, ½, ?, 1/6, 1½
- 3/2 6 -7 3 -7 -3
- 9 3 9 3
- -? 6 2 6 2 0
- -2 0 -2
- 6 0 6 0
- 6x2 6 0
- x i
19P414 HW 4 P415(1016, 2226e)EX 3 ? 3x4 5x3
10x2 20x 8 0
- 1, 2, 4, 8, ?, ?, 1
?, 2 ? - 2 3 -5 10 -20 -8
- 6 2 24 8
- -? 3 1 12 4 0
- -1 0 -4
- 3 0 12 0
- 3x2 12 0
- x 2i