2.3 Synthetic Substitution - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

2.3 Synthetic Substitution

Description:

2.3 Synthetic Substitution OBJ: To evaluate a polynomial for given values of its variables using synthetic substitution Top P 38 EX : P ( 2 ) P = 3 x 3 + 10 x 2 ... – PowerPoint PPT presentation

Number of Views:84
Avg rating:3.0/5.0
Slides: 20
Provided by: WHRHS
Learn more at: http://www.whrhs.org
Category:

less

Transcript and Presenter's Notes

Title: 2.3 Synthetic Substitution


1
2.3 Synthetic Substitution
  • OBJ ? To evaluate a polynomial for given values
    of its variables using synthetic substitution

2
Top P 38 EX ? P ( 2 ) P 3 x 3 10 x 2 5x
4
  • 2 3 10 -5 -4
  • ?_____________
  • 3
  • 2 3 10 -5 -4
  • ? 6_________
  • 3 16
  • 2 3 10 -5 -4
  • ? 6 32____
  • 3 16 27
  • 2 3 10 -5 -4
  • ? 6 32 54
  • 3 16 27 50
  • 3 x3 10 x2 5x 4
  • 3(2)3 10(2)25(2)4
  • 3(8) 10(4) 10 4
  • 24 40 10 4 50
  • P ( 2 ) 50

3
P 38 EX 2 ? 2 x 4 x 3 5x 3
  • x -2
  • -2 2 -1 0 5 3
  • ?
  • 2________________
  • -2 2 -1 0 5 3
  • ? -4
  • 2 -5___________
  • -2 2 -1 0 5 3
  • ? -4 10
  • 2 -5 10_______
  • -2 2 -1 0 5 3
  • ? -4 10 -20
  • 2 -5 10 15 33
  • x 3
  • 3 2 -1 0 5 3
  • ?________________
  • 2
  • 3 2 -1 0 5 3
  • ? 6___________
  • 2 5
  • 3 2 -1 0 5 3
  • ? 6 15_______
  • 2 5 15
  • 3 2 -1 0 5 3
  • ? 6 15 45____
  • 2 5 15 50 153

4
EX 3 ? 3 x 4 2x 2 6x 10
  • 2 3 0 -2 -6 10
  • ?
  • 3_______________
  • 2 3 0 -2 -6 10
  • ? 6
  • 3 6_____________
  • 2 3 0 -2 -6 10
  • ? 6 12
  • 3 6 10_________
  • 2 3 0 -2 -6 10
  • ? 6 12 20 28
  • 3 6 10 14 38
  • -2 3 0 -2 -6 10
  • ?________________
  • 3
  • -2 3 0 -2 -6 10
  • ? -6_____________
  • 3 -6
  • -2 3 0 -2 -6 10
  • ? -6 12________
  • 3 -6 10
  • -2 3 0 -2 -6 10
  • -6 12 -20 52
  • 3 -6 10 -26 62

5
DEF ? Remainder Theorem
  • When synthetic
  • division is done to a
  • polynomial for a
  • specific value, the
  • remainder is the same
  • as if the polynomial
  • was evaluated at that
  • value.
  • The remainder when a
  • polynomial is
  • synthetically divided
  • by a is equal to
  • the value when the
  • polynomial is
  • evaluated with the .

6
EX 4?P(x)x5 3x4 3x3 5x2 12
  • 2 1 -3 3 -5 0 12
  • ?
  • 1________________
  • 2 1 -3 3 -5 0 12
  • ? 2
  • 1 -1_____________
  • 2 1 -3 3 -5 0 12
  • ? 2 -2
  • 1 -1 1__________
  • 2 1 -3 3 -5 0 12
  • ? 2 -2 2 -6 -12
  • 1 -1 1 -3 -6__ 0 __
  • -1 1 -1 1 -3 -6 0
  • ?
  • 1__________________
  • -1 1 -1 1 -3 -6 0
  • ? -1
  • 1 -2_______________
  • -1 1 -1 1 -3 -6 0
  • ? -1 2
  • 1 -2 3___________
  • -1 1 -1 1 -3 -6 0
  • ? -1 2 -3 6
  • 1 -2 3 -6__0 ____
  • 1x32x23x 6 0

7
DEF ? Factor Theorem
  • When synthetic
  • division is done to a
  • polynomial for a
  • specific value (c) and
  • the remainder is 0,
  • then (x c) is a factor.
  • If a polynomial is
  • synthetically divided
  • by a and the
  • remainder is 0, then
  • x is a factor.

8
15.8 Higher-Degree Polynomial Equations
  • OBJ ? To find the zeros of an integral
    polynomial
  • ? To factor an integral
    polynomial in one variable
  • into first-degree factors
  • ? To solve an integral polynomial
    equation of degree gt2

9
  • DEF ? Integral Polynomial
  • DEF ? Zero of a polynomial
  • DEF? Integral Zero Theorem
  • A polynomial with all
  • integral coefficients
  • A that if evaluated in a
  • polynomial would
  • result in a 0 as the
  • remainder
  • The integral zeros of a
  • polynomial are the
  • integral factors of the
  • constant term, called p

10
EX 1 ? If P(x) 2x4 5x3 11x2 20x 12has
two first degree factors (x 2) and (x 3),
find the other two. Top P 409
  • 2 2 5 -11 -20 12
  • 2________________
  • 2 2 5 -11 -20 12
  • ? 4
  • 2 9_____________
  • 2 2 5 -11 -20 12
  • ? 4 18
  • 2 9 7 _________
  • 2 2 5 -11 -20 12
  • ? 4 18 14
  • 2 9 7 -6____
  • 2 2 5 -11 -20 12
  • ? 4 18 14 -12
  • 2 9 7 -6 0
  • -3 2 9 7 -6 0
  • ?
  • 2_________________
  • -3 2 9 7 -6
  • ? -6
  • 2 3______________
  • -3 2 9 7 -6
  • ? -6 -9
  • 2 3 -2 0____
  • 2x2 3x 2
  • (2x 1)(x 2)

11
P 410 HW 2 P 411 (1-19 odd)EX 1 P(x) x4 x3
8x2 2x 12
  • 1, 2, 3, 4, 6, 12
  • Use calculator table to find the zeros
  • 3 1 -1 -8 2 12
  • ?________________
  • 1________________
  • 3 1 -1 -8 2 12
  • 3______________
  • 1 2______________
  • 3 1 -1 -8 2 12
  • 3 6__________
  • 1 2 -2__________
  • 3 1 -1 -8 2 12
  • 3 6 -6_____
  • 1 2 -2 -4_____
  • -2 1 2 -2 -4 0
  • ?_________________
  • 1_________________
  • -2 1 2 -2 -4 0
  • ? -2_____________
  • 1 0_____________
  • -2 1 2 -2 -4 0
  • ? -2 0_________
  • 1 0 -2_________
  • -2 1 2 -2 -4 0
  • ? -2 0 4_____
  • 1 0 -2 0_____
  • x2 2 0
  • x v2

12
P410 EX 2 ? x 4 5x 2 36 0
  • 1, 2, 3, 4, 6, 9, 12, 18, 36
  • Use calculator table to find the
  • zeros.
  • 3 1 0 -5 0 -36
  • 1
  • 3 1 0 -5 0 -36
  • ? 3
  • 1 3
  • 3 1 0 -5 0 -36
  • ? 3 9
  • 1 3 4
  • 3 1 0 -5 0 -36
  • ? 3 9 12
  • 1 3 4 12
  • -3 1 3 4 12
  • ?
  • 1
  • -3 1 3 4 12
  • ? -3
  • 1 0
  • -3 1 3 4 12
  • ? -3 0
  • 1 0 4 0
  • x2 4 0
  • x 2i

13
EX 4 ? P(x) 2x3 17x2 40x 16
  • 1, 2, 4, 8, 16
  • Use calculator table to
  • find the zeros.
  • 4 2 -17 40 -16
  • ?
  • 2
  • 4 2 -17 40 -16
  • ? 8
  • 2 -9
  • 4 2 -17 40 -16
  • ? 8 -36
  • 2 -9 4
  • 2 -9 4 0
  • 2x2 9x 4
  • (2x 1)(x 4)

14
Note the following 3 facts
  • 1) Degree of polynomial is 3 and 3 factors
  • 2) 2 distinct zeros, 4 a multiplicity of two
  • 3) 3 unique factors 2(x 1/2)(x 4)(x 4)
  • constant of 2, coefficient of first term

15
15.9 Rational Zero Theorem
  • OBJ ? To find the zeros of an integral
    polynomial using the rational zero theorem

16
DEF ? Rational Zero Theorem
  • If p is a factor of the constant term and q
  • is a factor of the highest degree term,
  • than p/q are the possible rational zeros of
  • polynomial.

17
P 413 HW 3 P 415 (5-8) EX
1P(x) 6x4 x3 14x2 2x 4
  • 1, 2, 4, ½, ?, ?, 1 ? , 1/6
  • -1/2 6 -1 -14 2 4
  • -3 2 6 -4
  • 2/3 6 -4 -12 8 0
  • 4 0 -8
  • 6 0 -12 0
  • 6x2 12
  • x v2

18
EX 2 ? 6x 4 7x 3 3x 2 7x 3
  • 1, 3, ½, ?, 1/6, 1½
  • 3/2 6 -7 3 -7 -3
  • 9 3 9 3
  • -? 6 2 6 2 0
  • -2 0 -2
  • 6 0 6 0
  • 6x2 6 0
  • x i

19
P414 HW 4 P415(1016, 2226e)EX 3 ? 3x4 5x3
10x2 20x 8 0
  • 1, 2, 4, 8, ?, ?, 1
    ?, 2 ?
  • 2 3 -5 10 -20 -8
  • 6 2 24 8
  • -? 3 1 12 4 0
  • -1 0 -4
  • 3 0 12 0
  • 3x2 12 0
  • x 2i
Write a Comment
User Comments (0)
About PowerShow.com