Asymmetric Neutrino Emission from Strongly Magnetized Neutron Star (?????????????????????) - PowerPoint PPT Presentation

1 / 54
About This Presentation
Title:

Asymmetric Neutrino Emission from Strongly Magnetized Neutron Star (?????????????????????)

Description:

Asymmetric Neutrino Emission from Strongly Magnetized Neutron Star Tomoyuki MARUYAMA BRS ... – PowerPoint PPT presentation

Number of Views:134
Avg rating:3.0/5.0
Slides: 55
Provided by: maru169
Category:

less

Transcript and Presenter's Notes

Title: Asymmetric Neutrino Emission from Strongly Magnetized Neutron Star (?????????????????????)


1
Asymmetric Neutrino Emission fromStrongly
Magnetized Neutron Star(?????????????????????)
Tomoyuki MARUYAMA BRS, Nihon Univ.
(Japan)
Collaborators Toshitaka KAJINO Nao,
Univ. of Tokyo (Japan) Nobutoshi
YASUTAKE INFN, Catania
(Italy) Myung-ki CHEOUN Soongs
Univ. (Korea) Chung-Yeol
RYU Soongs Univ.
(Korea) Jun HIDAKA
Nao (Japan)
G.J. MATHEWS Univ. of Notre
Dome (USA) Takami KURODA
Nao (Japan)
1
2
(No Transcript)
3
(No Transcript)
4
1. Introduction
4
5
Birth of Proto-neutron Star
5
5
6
(No Transcript)
7
(No Transcript)
8
Pulsar Kick
CasA
A.G.Lyne, D.R.Lomier, Nature 369, 127 (94)
Asymmetry of Supernova Explosion kick and
translate Pulsar with Kick Velocity Average
400km/s, Highest
1500km/s Explosion Energy 1053 erg
(almost Neutrino Emissions) 1 Asymmetry are
sufficient to explain the Pulsar Kick
http//chandra.harvard.edu/photo/ 2004/casa/casa_x
ray.jpg
Present Work ? Neutrino Scattering and
Absorption In
Hot and Dense Neutron-Star-Matter
Estimating Kick Velocity and
Spin of NS
8
9
2. Formulation
Magnetic Field
  1. Proto-Nuetron-Star (PNS) Matter without Mag.
    Field
  2. Baryon Wave Function under Mag. Field in
    Perturbative Way
  3. Cross-Sections for n reactions

Weak Interaction ?e B ? ?e B
scattering ?e B ? e- B absorption

S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58
013009 (1998)
10
2-1 RMF Approach for Neutron-Star Mattter
11
EOS of PM1-1
T.M, H. Shin, H. Fujii, T. Tatsumi, Prog.
Theo. Phys. Vol.102, P809
12
EOS of Proto Neutron-Star-Matter
13
2-2 Dirac Equation under Magnetic Fields
?N B ltlt eF (Chem. Pot) ? B can be treated
perturbatively
Landau Level can be ignored
1017 G
14
3
negligibly small
Dirac Spinor
Spin Vector
14
15
Momentum Distr. of Major Part is deformed as
oblate
  • Relativistic Effects of Magnetic Contributions
  • Momentum Dependent of Spin Vector
  • Deformation of Fermi Distribution

15
16
Electron
When B ? 0 , the wave function ? plane wave
17
2-3 The Cross-Section of ?-B
Fermi Distribution
Deformed Distribution
Perturbative Treatment
Magnetic Part
Non-Magnetic Part
17
18
The Cross-Section of Lepton-Baryon Scattering
Spin-independent part
19
Spin-dependent Part
20
Electron Contribution
Single Particle Energy
Sum of Landau Level
Expectation Value of Quantity A
Perturbation
Spin vector
21
Final electron contribution in ne ? e-
22
3 Results of Cross-Sections
No magnetic field
23
Differential Cross-Sections in Magnetic Field
24
Initial Angle-Dependence
25
Magnetic parts of Cross-Sections
Scat.
Integrating over the initial angle
Absorp.
Integrating over the final angle
25
26
Magnetic Parts of Cross-Sections
27
Neutrino Mean-Free Paths
scattering
absorption
28
Contribution of Each Element in Scattering Part
29
Contribution of Each Element in Absorption Part
30
30
31
CasA
4 Estimating Pulsar Kick Velocities of
Proto-Neutron Star
A.G.Lyne, D.R.Lomier, Nature 369, 127 (94)
Asymmetry of Supernova Explosion kick and
translate Pulsar with Kick Velocity Average
400km/s, Highest
1500km/s
http//chandra.harvard.edu/photo/ 2004/casa/casa_x
ray.jpg
Explosion Energy 1053 erg (almost
Neutrino Emissions) 1 Asymmetry is
sufficient to explain the Pulsar Kick
D.Lai Y.Z.Qian, Astrophys.J. 495
(1998) L103
Estimating Kick Velocity of PNS with T 20 MeV
and B 2 1017G Poloidal
Magnetic Field 2-3 Asymmetry in Absorption
31
32
Neutrino Transportation
Neutrino Phase Space Distribution Function
Other Pieces are equilibrium
Neutrino Propagation ? Boltzmann Eq.
only absorption
Neutrinos Propagate on Strait Line
Solution ?
33
Mean-Free Paths
Magnetic Parts
Scattering
SA fitting function
Absorption
34
Baryon density in Proto-Neutron Star
M 1.68Msolar YL 0.4
Calculating Neutrino Propagation above rB r0
35
Baryon density in Proto-Neutron Star
T 20 MeV M 1.68 Msolar YL 0.4
Calculating Neutrino Propagation above rB r0
36
Neutrino Propagation
  • Neutrinos
  • propagate on the straight lines
  • 2) Neutrino are created and absorbed at all
    positions on the lines
  • Mean-Free Path
  • sab/V

37
Angular Dep. of Emitted Neutrinos in Uniform
Poloidal Mag. Field
p, n
p, n, L
38
5 Angular Deceleration in Toroidal Magnetic Field
Stability of Magnetic Field in Compact Objects
(Braithwaite Spruit 2004)
Toroidal Magnetic Field is stable !!
Mag. Field Parallel to Baryonic Flow Assym. of
n-Emit. must decelerate PNS Spin
38
39
No poloidal Magnetic Field at the beginning
Single Toroidal
by T. Kuroda
40
Finite Polaidal Magnetic Field at the beginning
Anti-paralleled Double Toroidal
by ??
41
Toroidal Magnetic Field
T 20MeV
Dr 0.5 (km) R0 8 (km) Mag.-A R0 5 (km)
Mag.-B
z 0
42
Angular Deceleration
Neutrino Luminosity (dET/dt)n 31052 erg/s
Period P 10s
Mag Distr. Bary. B G at rB r0 (cm) (n emis.) (g rad.)
Mag-A p,n 1.01016 46.7 3.0210-2 4.8210-2 1.010-8
Mag-A p,n,L 1.61016 70.6 5.1910-2 8.2610-2 2.610-8
Mag-B p,n 2.61013 0.157 1.0110-4 1.6110-4 6.610-14
Mag-B p,n,L 4.21013 0.259 1.9010-4 3.0310-4 1.710-13
In Early Stage ( 10 s) n Asymmetric Emission
must affect PNS Spin More Significantly than
Magnetic Dipole g-Radiation
42
43
43
5 Summary
  • EOS of Neutron-Star-Matter with p, n, ? in RMF
    Approach
  • Exactly Solving Dirac Eq. with Magnetic Field in
    Perturbative Way
  • Cross-Sections of Neutrino Scattering and
    Absorption
  • under Strong Magnetic Field, calculated in
    Perturbative Way
  • Neutrinos are More Scattered and Less Absorbed
  • in Direction Parallel to
    Magnetic Field
  • ? More Neutrinos are Emitted in Arctic Area
  • Scattering 1.7
  • Absorption 2.2 at ?B3?0 and T 20
    MeV
  • ? Convection, Pulsar-Kick

44
Pulsar Kick in Poroidal Mag. Field B 2
1017G ? Perturbative Cal. vkick 580 km/s (
p,n ) , 610 km/s (p,n,?) at T 20 MeV
230 km/s ( p,n ) , 270 km/s (p,n,?) at
T 30 MeV 400 km/s
(Average of Observed Values) Spin
Deceleration in Toroidal Magnetic Field
Asymmetric n-Emission plays an important role
in PNS Spin in Early Time Future Plans
n-Scattering Fixed
Temp. ? Constant Entropy
Exact Solution of Dirac Eq. in
Non-Perturbative Cal.
? Landau Level at least for Electron
Antarctic Dir.
Mag Distr. (P 10 s) (P 10 s)
Mag Distr. p,n p,n,L
Mag-A 4.810-3 5.210-3
Mag-B 6.110-3 7.210-3
Dpl. Rad. 9.810-11 9.810-11
Reestimating when B 1015G in the surface with
r r0
44
45
EOS in Iso-Entropical Model
46
2-1 Neutron-Star Matter in RMF Approach
RMF Lagrangian, N, L, s, ?, r
Dirac Eq.
Scalar Field ? Effective Mass
47
negligibly small
Dirac Spinor
Spin Vector
48
(No Transcript)
49
Neutrino Propagation
  • Neutrinos
  • propagate on the straight lines
  • 2) Neutrino are created and absorbed at all
    positions on the lines
  • Mean-Free Path
  • sab/V

50
Absorption Mean-Free Path
B 0
30MeV
SA fitting function
50MeV
100MeV
200MeV
300MeV
51
3 Results
52
Neutrino Mean-Free-Path at Energy equal to Chem.
Potential
53
Magnetic Parts of Cross-Sections
54
Magnetic Parts of Cross-Sections
Write a Comment
User Comments (0)
About PowerShow.com