dongleizhao@163.com - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

dongleizhao@163.com

Description:

Title: Information Theoretic Clustering and Co-Clustering for Text Mining Author: Inderjit Dhillon Last modified by: zdl Created Date: 4/1/2003 1:52:25 AM – PowerPoint PPT presentation

Number of Views:100
Avg rating:3.0/5.0
Slides: 25
Provided by: Inder5
Category:

less

Transcript and Presenter's Notes

Title: dongleizhao@163.com


1
?????????
???????
  • ???
  • dongleizhao_at_163.com

2
  • ??????
  • ??????
  • ??????????
  • ????????????????
  • ??
  • ????

3
??????
  • ??????????????????????????,???????,???????????????
  • ??????
  • ??????????????
  • ???????????????????
  • ?????????????
  • ???????????
  • ?????????????

4
??????
  • 1998?Liu????????????????CBA?
  • 1999?Dong??????????CAEP?
  • 2000?Wang???????????????????????
  • 2001?Li????????????????CMAR?
  • 2003?Yin???????????????CPAR?CPAR??????????????????
    ??
  • 2004?Antonie??????????????
  • 2005?Wang??HARMONY,??????????????????
  • 2006?Adriano Veloso????lazy?????
  • 2006,2007?Arunasalam???????????????????

5
????
  • ????AgtB
  • If A then C
  • ??1 ??????
  • ??????????A, ???????????C??????.
  • ??2 ??????
  • ?????????????????A?????????.

6
??????????
  • ?????????
  • ?????
  • ????
  • ???????????
  • ??????? ????????
  • ???????? ???????
  • ???????? ???????????

7
??????
  • ???????
  • ?????????FP-tree?,??????????????
  • ??TD-FP-Growth??,???????????????????????????
  • ?????????,????????FP-tree????????,????????

8
?????FP-tree???
9
  • ????????
  • ???????????
  • ????????????
  • ???????????????????????

10
????????????
  • ??????????????
  • ????Ri,Rj? Ri??Rj,????????????
  • Ri???Rj??????
  • Ri?Rj????????, Ri???Rj??????
  • Ri?Rj????????????, Ri???Rj??????

11
  • ??????????????
  • ?????????,???,??????????????????,????????????,????
    ?????????????,???????
  • ????????????

12
  • R1 sup(R1) 100, conf(R1) 98
  • R2 sup(R2) 10, conf(R2) 100
  • ????? R1 lt R2
  • R1 gt R2
  • R1????????,R2?????????

13
15?UCI???????
14
???????????
15
????????
  • ????????
  • ???????
  • ?????????
  • ????????????????

16
????????
  • ????????????
  • ?????????????????????
  • ????????????,???????????
  • ??????
  • ??????????????????????
  • ?????????????????????
  • ???????

17
?????????
R120, 100
R220, 95
R420, 85
R320, 90
18
????????
  • ????????,??????????,????
  • ??
  • ???????
  • ????,??????????

19
????????????????
  • ?????????
  • ????????
  • ????????????
  • ?????,?????????
  • ?????????????

20
??
  • ?????????????
  • ???????
  • ????????
  • ????????

21
????
  • 1 B. Liu, W. Hsu and Y. Ma. Integrating
    Classification and Association Rule Mining. In
    Proc. of 1998 Int. Conf. on Knowledge Discovery
    and Data Mining (KDD'98), pp.80-86, New York, Aug
    1998.
  • 2 J. Han, J. Pei and Y. Yin. Mining Frequent
    Patterns without Candidate Generation. In Proc.
    of the ACM-SIGMOD 2000 Int. Conf. on Management
    of Data (SIGMOD00), pp.1-12, Dallas, May 2000.
  • 3 W. Li, J. Han and J. Pei. CMAR Accurate and
    Efficient Classification Based on Multiple
    Class-Association Rules. In Proc. of 2001 IEEE
    Int. Conf. on Data Mining (ICDM'01), pp.369-376,
    San Jose CA, Nov 2001.
  • 4 J. Li, G. Dong, K. Ramamohanarao and L.
    Wong. DeEPs A New Instance-Based Lazy Discovery
    and Classification System. Machine Learning. 54,
    pp.99-124, 2004.
  • 5 Adriano Veloso, Wagner Meira Jr, and
    Mohammed J. Zaki. Lazy Association
    Classification. In Proc. of 2006 IEEE Int. Conf.
    on Data Mining (ICDM'06), pp.645-654, Hong Kong,
    Oct 2006.
  • 6 Maria-Luiza Antonie, Osmar R. Zaiane, and
    Robert C. Holte. Learning to Use a Learned Model
    A Two-Stage Approach to Classification. In Proc.
    of 2006 IEEE Int. Conf. on Data Mining (ICDM'06),
    pp.645-654, Hong Kong, Oct 2006.
  • 7 Abdelaziz Berrado, George C. Runger. Using
    Metarules to Organize and Group Discovered
    Association Rules. Data Mining and Knowledge
    Discover. 14 409-431, 2007.
  • 8 F. Thabtah, P. Cowling, and Y. Peng. MCAR
    Multi-class Classification based on Association
    Rule Approach. In Proceeding of the 3rd IEEE
    International Conference on Computer Systems and
    Applications. pp.1-7. Cairo, Egypt.

22
  • 9 O. R. Zaiane and M.-L. Antonie. On pruning
    and tuning rules for associative classifiers. In
    Proc. of Int'l Conf. on Knowledge-Based
    Intelligence Information Engineering Systems
    (KES'05), pp.966-973, 2005.
  • 10Adriano Veloso, Wagner Meira Jr. Rule
    Generation and Rule Selection Techniques for
    Cost-Sensitive Associative Classification. In
    SBBD 2005. pp.295-309, 2005.
  • 11J. Wang and G. Karypis. HARMONY Efficiently
    Mining the Best Rules for Classification. In
    Proc. of 2006 SIAM Int. Conf. on Data Mining
    (SDM'05), California, USA, April 2005.
  • 12Bing Liu, Yiming Ma, C-K Wong, Classification
    Using Association Rules Weaknesses and
    Enhancements. In Vipin Kumar, et al, (eds), Data
    mining for scientific applications, 2001
  • 13 X. Yin and J. Han. CPAR Classification
    based on Predictive Association Rules. In Proc.
    2003 SIAM Int.Conf. on Data Mining (SDM'03), San
    Fransisco, CA, May 2003.
  • 14 Frans Coenen and Paul Leng. The Effect of
    Threshold Values on Association Rule Based
    Classification Accuracy. Journal of Data and
    Knowledge Engineering, Vol. 60, Num. 2,
    pp345-360, February 2007
  • 15 Frans Coenen, Paul Leng, and Lu Zhang.
    Threshold Tuning for Improved Classification
    Association Rule Mining. In Proc. of 6th Pacific
    Area Conference on Knowledge Discovery and Data
    Mining (PAKDD'05), pp.334-340, Taipei, May 3-8
    2002
  • 16 Maria-Luiza Antonie and Osmar R. Zaiane, An
    Associative Classifier based on Positive and
    Negative Rules, In 9th ACM SIGMOD Workshop on
    Research Issues in Data Mining and Knowledge
    Discovery (DMKD-04), pp 64-69, Paris, France,
    June 2004

23
  • 17 Yanbo J. Wang, Qin Xin and Frans Coenen. A
    Novel Rule Ordering Approach in Classification
    Association Rule Mining. In Proc. MLDM'2007,
    pp339-348. 2007.
  • 18 Frans Coenen and Paul Leng. An Evaluation of
    Approaches to Classification Rule Selection. In
    Proc. of 2004 IEEE Int. Conf. on Data Mining
    (ICDM'04), pp359-362, 2004
  • 19 K. Wang, S. Zhou, and Y. He. Growing
    decision tree on support-less association rules.
    In Proc. Of 2000 Int. Conf. on Knowledge
    Discovery and Data Mining (KDD'00), Boston, MA,
    Aug. 2000.
  • 20Frans Coenen and Paul Leng. Obtaining Best
    Parameter Values for Accurate Classification. In
    Proc. of 2005 IEEE Int. Conf. on Data Mining
    (ICDM'05), pp.597-600, 2005
  • 21 D. Meretakis and B. Wuthrich. Extending
    Naïve Bayes Classifiers Using Long Itemsets. In
    Proc. 1999 Int. Conf. on Knowledge Discovery and
    Data Mining (KDD'99) , pages 165-174, San Diego,
    CA, Aug. 1999.
  • 22 Bing Liu, Yiming Ma, and Ching Kian Wong.
    Improving an Association Rule Based Classifier.
    In Proceedings of the 4th European Conference on
    Principles of Data Mining and Knowledge
    Discovery, Pages 504 509, 2000
  • 23 Bavani Arunasalam and Sanjay Chawla. CCCS A
    Top-down Associative Classifier for Imbalanced
    Class Distribution. In Proc. Of 2006 Int. Conf.
    on Knowledge Discovery and Data Mining (KDD'06),
    pp.517- 522. 2006
  • 24 Florian Verhein and Sanjay Chawla. Using
    Significant, Positively Associated and Relatively
    Class Correlated Rules for Associative
    Classification of Imbalanced Datasets, In Proc.
    of 2007 IEEE Int. Conf. on Data Mining (ICDM'07),
    2007.

24
?????!
Write a Comment
User Comments (0)
About PowerShow.com