White-Box Testing Techniques II - PowerPoint PPT Presentation

1 / 70
About This Presentation
Title:

White-Box Testing Techniques II

Description:

White-Box Testing Techniques II Dataflow Testing Originals prepared by Stephen M. Thebaut, Ph.D. University of Florida – PowerPoint PPT presentation

Number of Views:107
Avg rating:3.0/5.0
Slides: 71
Provided by: mcat151
Category:

less

Transcript and Presenter's Notes

Title: White-Box Testing Techniques II


1
White-Box Testing Techniques II
Dataflow Testing
  • Originals prepared by
  • Stephen M. Thebaut, Ph.D.
  • University of Florida

2
White-Box Testing Topics
  • Logic coverage
  • Dataflow coverage
  • Path conditions and symbolic execution (lecture
    III)
  • Other white-box testing strategies
  • e.g. fault-based testing

3
Dataflow Coverage
  • Basic idea
  • Program paths along which variables are defined
    and then used should be covered
  • A family of path selection criteria has been
    defined, each providing a different degree of
    coverage
  • CASE tool support is very desirable

4
Variable Definition
  • A program variable is DEFINED when it appears
  • on the left hand side of an assignment statement
    eg y 17
  • in an input statement eg read(y)
  • as an call-by-reference parameter in a subroutine
    call eg update(x, y)

5
Variable Use
  • A program variable is USED when it appears
  • on the right hand side of an assignment statement
    eg y x17
  • as an call-by-value parameter in a subroutine or
    function call eg y sqrt(x)
  • in the predicate of a branch statement eg if ( x
    gt 0 )

6
Variable Use p-use and c-use
  • Use in the predicate of a branch statement is a
    predicate-use or p-use
  • Any other use is a computation-use or c-use
  • For example, in the program fragment
  • if ( x gt 0 )
  • print(y)
  • there is a p-use of x and a c-use of y

7
Variable Use
  • A variable can also be used and then re-defined
    in a single statement when it appears
  • on both sides of an assignment statement eg y
    y x
  • as an call-by-reference parameter in a subroutine
    call eg increment( y )

8
More Dataflow Terms and Definitions
  • A path is definition clear (def-clear) with
    respect to a variable v if it has no variable
    re-definition of v on the path
  • A complete path is a path whose initial node is a
    start node and whose final node is an exit node

9
Dataflow Terms and Definitions
  • A definition-use pair (du-pair) with respect to
    a variable v is a double (d,u) such that
  • d is a node in the programs flow graph at which
    v is defined,
  • u is a node or edge at which v is used and
  • there is a def-clear path with respect to v from
    d to u
  • Note that the definition of a du-pair does not
    require the existence of a feasible def-clear
    path from d to u

10
Example 1
  • 1. input(A,B)
  • if (Bgt1)
  • 2. A A7
  • 3. if (Agt10)
  • 4. B AB
  • 5. output(A,B)

input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
11
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
12
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
13
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
14
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
15
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
16
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
17
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
18
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
19
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
20
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
21
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
22
Identifying DU-Pairs Variable A
du-pair path(s)
(1,2) lt1,2gt
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt
(2,5) lt2,3,4,5gt
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
23
Identifying DU-Pairs Variable B
input(A,B)
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,3,4gt
(1,5) lt1,2,3,5gt
lt1,3,5gt
(1,lt1,2gt) lt1,2gt
(1,lt1,3gt) lt1,3gt
(4,5) lt4,5gt
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
24
Dataflow Test Coverage Criteria
  • All-Defs for every program variable v, at
    least one def-clear path from every definition of
    v to at least one c-use or one p-use of v must
    be covered

25
Dataflow Test Coverage Criteria
  • Consider a test case executing path
  • 1. lt1,2,3,4,5gt
  • Identify all def-clear paths covered (ie
    subsumed) by this path for each variable
  • Are all definitions for each variable associated
    with at least one of the subsumed def-clear
    paths?

26
Def-Clear Paths subsumed by lt1,2,3,4,5gt for
Variable A
du-pair path(s)
(1,2) lt1,2gt ?
(1,4) lt1,3,4gt
(1,5) lt1,3,4,5gt
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt ?
(2,5) lt2,3,4,5gt ?
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt ?
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
27
Def-Clear Paths Subsumed by lt1,2,3,4,5gt for
Variable B
input(A,B)
du-pair path(s)
(1,4) lt1,2,3,4gt ?
lt1,3,4gt
(1,5) lt1,2,3,5gt
lt1,3,5gt
(4,5) lt4,5gt ?
(1,lt1,2gt) lt1,2gt ?
(1,lt1,3gt) lt1,3gt
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
28
Dataflow Test Coverage Criteria
  • Since lt1,2,3,4,5gt covers at least one def-clear
    path from every definition of A or B to at least
    one c-use or p-use of A or B, All-Defs coverage
    is achieved

29
Dataflow Test Coverage Criteria
  • All-Uses for every program variable v, at
    least one def-clear path from every definition
    of v to every c-use and every p-use of v must be
    covered
  • Consider additional test cases executing paths
  • 2. lt1,3,4,5gt
  • 3. lt1,2,3,5gt
  • Do all three test cases provide All-Uses coverage?

30
Def-Clear Paths Subsumed by lt1,3,4,5gt for
Variable A
du-pair path(s)
(1,2) lt1,2gt ?
(1,4) lt1,3,4gt ?
(1,5) lt1,3,4,5gt ?
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt ?
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt ?
(2,5) lt2,3,4,5gt ?
lt2,3,5gt
(2,lt3,4gt) lt2,3,4gt ?
(2,lt3,5gt) lt2,3,5gt
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
31
Def-Clear Paths Subsumed by lt1,3,4,5gt for
Variable B
input(A,B)
du-pair path(s)
(1,4) lt1,2,3,4gt ?
lt1,3,4gt ?
(1,5) lt1,2,3,5gt
lt1,3,5gt
(4,5) lt4,5gt ??
(1,lt1,2gt) lt1,2gt ?
(1,lt1,3gt) lt1,3gt ?
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
32
Def-Clear Paths Subsumed by lt1,2,3,5gt for
Variable A
du-pair path(s)
(1,2) lt1,2gt ? ?
(1,4) lt1,3,4gt ?
(1,5) lt1,3,4,5gt ?
lt1,3,5gt
(1,lt3,4gt) lt1,3,4gt ?
(1,lt3,5gt) lt1,3,5gt
(2,4) lt2,3,4gt ?
(2,5) lt2,3,4,5gt ?
lt2,3,5gt ?
(2,lt3,4gt) lt2,3,4gt ?
(2,lt3,5gt) lt2,3,5gt ?
input(A,B)
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
33
Def-Clear Paths Subsumed by lt1,2,3,5gt for
Variable B
input(A,B)
du-pair path(s)
(1,4) lt1,2,3,4gt ?
lt1,3,4gt ?
(1,5) lt1,2,3,5gt ?
lt1,3,5gt
(4,5) lt4,5gt ??
(1,lt1,2gt) lt1,2gt ? ?
(1,lt1,3gt) lt1,3gt ?
1
Bgt1
2
A A7
B?1
3
Agt10
4
B AB
A?10
5
output(A,B)
34
Dataflow Test Coverage Criteria
  • None of the three test cases covers the du-pair
    (1,lt3,5gt) for variable A,
  • All-Uses Coverage is not achieved

35
Example 2
  • 1. input(X,Y)
  • 2. while (Ygt0)
  • 3. if (Xgt0)
  • 4. Y Y-X
  • else
  • 5. input(X)
  • 6.
  • 7. output(X,Y)

1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
36
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
37
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
38
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
39
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
40
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
41
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
42
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
43
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
44
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
45
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
46
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
47
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
48
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
49
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
50
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
51
Identifying DU-Pairs Variable X
du-pair path(s)
(1,4) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,7) lt1,2,7gt
lt1,2,3,4,6,7gt
lt1,2,3,4,6,(3,4,6),7gt
(1,lt3,4gt) lt1,2,3,4gt
lt1,2,3,4,(6,3,4)gt
(1,lt3,5gt) lt1,2,3,5gt
(5,4) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
52
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6),7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt

1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
53
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6),7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
54
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6),7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
55
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6),7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
56
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6),7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
57
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6),7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
58
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6),7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
59
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6)7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
60
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6)7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
61
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6)7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
62
Identifying DU-Pairs Variable X
du-pair path(s)
(5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6)7gt
(5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
(5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
1
input(X,Y))
2
Ygt0
Y?0
3
Xgt0
X?0
Y Y-X
input(X)
4
5
6
Y?0
Ygt0
7
output(X,Y)
63
More Dataflow Terms and Definitions
  • A path (either partial or complete) is simple if
    all edges within the path are distinct ie
    different
  • A path is loop-free if all nodes within the path
    are distinct ie different

64
Simple and Loop-Free Paths
path Simple? Loop-free?
lt1,3,4,2gt
lt1,2,3,2gt
lt1,2,3,1,2gt
lt1,2,3,2,4gt
65
More Dataflow Terms and Definitions
  • A path ltn1,n2,...,nj,nkgt is a du-path with
    respect to a variable v if v is defined at node
    n1 and either
  • there is a c-use of v at node nk and
    ltn1,n2,...,nj,nkgt is a def-clear simple path, or
  • there is a p-use of v at edge ltnj,nkgt and
    ltn1,n2,...njgt is a def-clear loop-free path.

66
More Dataflow Terms and Definitions
  • A path ltn1,n2,...,nj,nkgt is a du-path with
    respect to a variable v if v is defined at node
    n1 and either
  • there is a c-use of v at node nk and
    ltn1,n2,...,nj,nkgt is a def-clear simple path, or
  • there is a p-use of v at edge ltnj,nkgt and
    ltn1,n2,...njgt is a def-clear loop-free path.

NOTE!
67
Identifying du-paths
du-pair path(s) du-path?
X (5,7) lt5,6,7gt
lt5,6,3,4,6,7gt
lt5,6,3,4,6,(3,4,6),7gt
X (5,lt3,4gt) lt5,6,3,4gt
lt5,6,3,4,(6,3,4)gt
X (5,lt3,5gt) lt5,6,3,5gt
lt5,6,3,4,6,3,5gt
lt5,6,3,4,6,(3,4,6),3,5gt
infeasible infeasible
68
Another Dataflow Test Coverage Criterion
  • All-DU-Paths for every program variable v,
    every du-path from every definition of v to
    every c-use and every p-use of v must be covered

69
Exercise
  • Identify all c-uses and p-uses for variable Y in
    Example 2
  • For each c-use or p-use, identify (using the
    notation) all def-clear paths
  • Identify whether or not each def-clear path is
    feasible, and whether or not it is a du-path

70
White-Box Coverage Subsumption Relationships
Path
Compound Condition
All du-paths
Branch / Condition
All-Uses
Basis Paths
Loop
Condition
Branch
All-Defs
Statement
Write a Comment
User Comments (0)
About PowerShow.com