Title: AEB 6184
1AEB 6184 Mitscherlich-Baule Production Function
and McFadden Cost Function
2Mitscherlich-Baule Production Function
- Starting with the simulated cost surface for
production - I generated 200 minimum cost solutions using
numerical optimization for a vector of randomly
drawn prices. - I also added a correlated error term.
3Normalized Quadratic Cost Function
- Following our discussion from the class, I
estimated the normalized quadratic cost function
4Normalized Quadratic Results
Coefficient Estimate Std. Dev. t-ratio
A0 10.1091 0.0019 5386.0690
A1 25.2884 0.0302 838.1074
A2 20.6540 0.0303 681.2309
A11 -40.9602 0.0301 -1360.3379
A12 11.7768 0.0261 450.4070
A22 -30.8339 0.0303 -1018.9975
B1 0.0355 0.0001 -438.4198
B11 0.0001 0.0000 49.3547
G1 0.0513 0.0002 273.4090
G2 0.0443 0.0002 208.2206
5Eigenvalues of A
- The eigenvalues of A indicate that the cost
function is concave in input prices. - In addition, the negative sign on the squared y
indicates that the surface is convex in output
levels.
6McFadden Cost Function
- Diewert, W.E. and T.J. Wales. 1987. Flexible
Forms and Global Curvature Conditions
Econometrica 55(1), 43-68.
7Shephards Lemma
- Taking the derivatives Two cases
- i1
- i 2,
8Hessian Matrix
- The Hessian matrix is then determined by the
quadratic term - Concavity can be imposed by Laus method
9McFadden Estimates
Parameter Estimate Std. Dev. T-Ratio
c11 -0.0117 0.0045 -2.5800
c12 0.0029 0.0021 1.3648
c22 -0.0038 0.0016 -2.4328
b11 0.0262 0.0072 3.6396
b22 0.0428 0.0110 3.8931
b33 0.0441 0.0188 2.3492
b1 -2.2196 2.0865 -1.0638
b2 47.2642 20.0597 2.3562
b3 4.8732 1.5026 3.2431
byy -3.0245 1.0477 -2.8867
10Concavity