Knight - PowerPoint PPT Presentation

About This Presentation
Title:

Knight

Description:

By: Drew Moen – PowerPoint PPT presentation

Number of Views:133
Avg rating:3.0/5.0
Slides: 12
Provided by: Drew1153
Learn more at: http://home2.fvcc.edu
Category:
Tags: graph | knight | theory

less

Transcript and Presenter's Notes

Title: Knight


1
Knights Tour using Graph Theory
By Drew Moen
2
Graph Theory History
  • Leonhard Euler - founder
  • The Seven Bridges of Königsberg
  • Cross every Bridge once
  • Change the city into a graph
  • Change the graph into a matrix

3
Applications
  • Programming
  • Engineering
  • Communications
  • Circuitry
  • Social Networks
  • Shortest Path

4
Knights Tour
  • Hamilton Path
  • A path that visits every vertex on a graph one
    time
  • Knights Tour
  • A path that a knight takes on a nxn or nxm
    checkerboard to visit every vertex once
  • Setup
  • Create a graph
  • Model graph with a matrix

5
Purpose
  • Finding new ways to solve for a knights tour
  • Figuring out where a knight can arrive with a
    restricted amount of moves
  • Finding out how many moves a knight needs to get
    anywhere on the board

6
Graph
7
Matrix
Four by FourB0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
Three by ThreeC0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0
8
Matrix Application
  • A2All locations a knight can travel in two moves
  • A3 three moves, A4, A5, A6

C2 2 0 1 0 0 0 1 0 0 0 2 0 1 0 1 0 0
0 1 0 2 0 0 0 0 0 1 0 1 0 2 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 2 0 1 0 1 0 0 0 0 0 2 0 1
0 0 0 1 0 1 0 2 0 0 0 1 0 0 0 1 0 2
9
More Moves
C5 0 6 0 6 0 10 0 10 0
6 0 6 0 0 0 10 0
10 0 6 0 10 0 6 0 10
0 6 0 10 0 0 0 6
0 10 0 0 0 0 0 0 0
0 0 10 0 6 0 0 0
10 0 6 0 10 0 6 0 10
0 6 0 10 0 10 0 0 0
6 0 6 0 10 0 10 0
6 0 6 0
C3 0 1 0 1 0 3 0 3 0 1 0 1 0 0 0 3 0
3 0 1 0 3 0 1 0 3 0 1 0 3 0 0
0 1 0 3 0 0 0 0 0 0 0 0 0 3 0
1 0 0 0 3 0 1 0 3 0 1 0 3 0 1 0
3 0 3 0 0 0 1 0 1 0 3 0 3 0 1 0 1 0
C4 6 0 4 0 0 0 4 0 2 0 6 0 4 0 4 0 2
0 4 0 6 0 0 0 2 0 4 0 4 0 6 0 2
0 4 0 0 0 0 0 0 0 0 0 0 0 4 0 2
0 6 0 4 0 4 0 2 0 0 0 6 0 4 0 2
0 4 0 4 0 6 0 2 0 4 0 0 0 4 0 6
10
Patterns
0 496 0 496 0 528
0 528 0 496 0
496 0 0 0 528 0
528 0 496 0 528 0
496 0 528 0 496 0
528 0 0 0 496 0
528 0 0 0 0
0 0 0 0 0
528 0 496 0 0 0
528 0 496 0 528 0
496 0 528 0 496 0
528 0 528 0 0
0 496 0 496 0
528 0 528 0 496 0
496 0
C11 C10
272 0 256 0 0 0
256 0 240 0 272 0
256 0 256 0 240
0 256 0 272 0 0
0 240 0 256 0
256 0 272 0 240 0
256 0 0 0 0
0 0 0 0 0 0
0 256 0 240 0
272 0 256 0 256 0
240 0 0 0 272 0
256 0 240 0 256
0 256 0 272 0 240
0 256 0 0 0
256 0 272
11
Works Cited
  • Rosen, Kenneth H.. Discrete Mathematics and Its
    Applications. Fifth. New York, NY McGraw-Hill,
    2003.
  • Strang, Gilbert. Introduction to Linear Algebra.
    Third. Wellesley MA Wellesley-Cambridge Press,
    2003.
  • Houry, J K.. "Application to Graph theory." 11
    Nov 2008 lthttp//aix1.uottawa.ca/jkhoury/graph.ht
    mgt.
  • Ramas, Amy. "Art of Knight Graph." knight_tour.
    04 July 2007. 16 Dec 2008 lthttp//wiki.phiepsilon.
    org/doku.php?idknight_tourgt.
  • "Graph Theory Knight's Tour." 18 Dec 2008
    lthttp//en.wikipedia.orggt.
  • Farmer, Jesse. "Graph Theory." 31 July 2007. 15
    Dec 2008 lthttp//20bits.com/articles/graph-theorygt
    .
  • Hickethier, Don. QA interview. 17 Dec 2008.
Write a Comment
User Comments (0)
About PowerShow.com