Title: Massive star feedback
1Massive star feedback from the first stars to
the present
Jorick Vink (Keele University)
2Outline
- Why predict Mass-loss rates?
- (as a function of Z)
- Monte Carlo Method
- Results OB, Be, LBV WR winds
- Cosmological implications?
- Look into the Future
3Why predict Mdot ?
- Energy Momentum input into ISM
4Massive star feedback
NGC 3603
5Why predict Mdot ?
- Energy Momentum input into ISM
6Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
7Evolution of a Massive Star
Be
O
8Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Explosions SN, GRBs
9Progenitor for Collapsar model
- Rapidly rotating
- Hydrogen-free star (Wolf-Rayet star)
- But
Woosley (1993)
10Progenitor for Collapsar model
- Rapidly rotating
- Hydrogen-free star (Wolf-Rayet star)
- But
- Stars have winds
Woosley (1993)
11Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Explosions SN, GRBs
- Final product Neutron star, Black hole
12Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Explosions SN, GRBs
- Final product Neutron star, Black hole
- X-ray populations in galaxies
13Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
14Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
15Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
- Analyses of starbursts
16Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
- Analyses of starbursts
- Ionizing Fluxes
17Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
18Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar Spectra
- Stellar Cosmology
19From Scientific American
20The First Stars
Credit V. Bromm
21The Final products of Pop III stars
(Heger et al. 2003)
22From Scientific American
23Why predict Mdot ?
- Energy Momentum input into ISM
- Stellar Evolution
- Stellar spectra
- Stellar cosmology
24Observations of the first stars
25Goal quantifying mass loss a function of Z (and
z)
- What do we know at solar Z ?
26Radiation-driven wind by Lines
Lucy Solomon (1970) Castor, Abbott Klein
(1975) CAK
Wind
STAR
Fe
27Radiation-driven wind by Lines
Abbott Lucy (1985)
28Momentum problem in O star winds
A systematic discrepancy
29Monte Carlo approach
30Approach
- Assume a velocity law
- Compute model atmosphere, ionization
stratification, level populations - Monte Carlo to compute radiative force
31Mass loss parameter study
32Monte Carlo Mass loss comparison
(Vink et al. 2000)
No systematic discrepancy anymore !
33Lamers et al. (1995) Crowther et al.
(2006)
34Monte Carlo Mass-loss rates
? dM/dt increases by factor 3-5
(Vink et al. 1999)
35The bi-stability Jump
- HOT
- Fe IV
- low dM/dt
- high Vinf
- Low density
- COOL
- Fe III
- high dM/dt
- low Vinf
- High density
36Stars should pass the bistable limit
- During evolution from O ? B
- LBVs on timescales of years
-
-
37LBVs in the HRD
Smith, Vink de Koter (2004)
38The mass loss of LBVs
Models
Data
Stahl et al. (2001) Vink de
Koter (2002)
39Stars should pass the bistable limit
- During evolution from O ? B
- LBVs on timescales of years
- Implications for circumstellar medium (CSM)
-
- Mass-loss rate up 2
- wind velocity down 2
- CSM density variations 4
40SN-CSM interaction ? radio
Weiler et al. (2002)
41Mass Loss Results from Radio SNe
OB star? WR?
42SN 2001ig 2003bg
2003bg
2001ig
Soderberg et al. (2006)
Ryder et al. (2004)
43Progenitors
- AGB star
- Binary WR system
- WR star
- LBV
44Progenitors
- AGB star
- Binary WR system
- WR star
- LBV
Kotak Vink (2006)
45Assumptions in line-force models
- Stationary
- One fluid
- Spherical
46Polarimetry from disks
47Depolarisation
48Asphericity in LBV HR CAR
(Davies, Oudmaijer Vink 2005) SURVEY
asphericity found in 50
49Variable polarization in AG CAR
(Davies, Oudmaijer Vink 2005) ?
RANDOM CLUMPS!!
50Assumptions in line-force models
- Stationary
- One fluid
- Spherical
- Homogeneous, no clumps
51Success of Monte Carlo at solar Z
- O-star Mass loss rates
- Prediction of the bi-stability jump
- Mass loss behaviour of LBVs like AG Car
- ? Monte Carlo mass-loss used in stellar
models in Galaxy
52O star mass-loss Z-dependence
(Vink et al. 2001)
53O star mass-loss Z-dependence
Kudritzki (2002) --- Vink et al. (2001)
54O star mass-loss Z-dependence
55Which metals are important?
Vink et al. (2001)
solar Z
Fe
CNO
H,He
low Z
At lower Z Fe ? CNO
56WR stars produce Carbon !
Geneva models (Maeder Meynet 1987)
57WR stars produce Carbon !
Geneva models (Maeder Meynet 1987)
58Which element drives WR winds?
- C ? WR mass loss not Z(Fe)-dependent
- Fe ? WR mass loss depends on Z host
59Z-dependence of WR winds
WN
WC
Vink de Koter (2005, AA 442, 587)
60Corollary of lower WR mass loss
- ? less angular momentum loss
- ? favouring the collapse of WR stars to produce
GRBs - ? Long-duration GRBs favoured at low Z
61Conclusions
- Successful MC Models at solar Z
- O star winds are Z-dependent (Fe)
- WR winds are Z-dependent (Fe) ? GRBs
- Low-Z WC models flattening of this dependence
- Below log(Z/Zsun) -3 ? Plateau
- ? Mass loss may play a role in early Universe
62Future Work
- Solving momentum equation
- Wind Clumping
-
- Compute Mdot close to Eddington limit
63Mass loss Eddington Limit
Gamma5
Vink (2006) - astro-ph/0511048
64Future Work
- Solving momentum equation
- Wind Clumping
-
- Compute Mdot close to Eddington limit
- Compute Mdot at subsolar and Z 0
65From Scientific American
66(No Transcript)
67Non-consistent velocity law
WC8
Beta 1
68Wind momenta at low Z
Data (Mokiem)
Models (Vink)
Vink et al. (2001) Mokiem et al.
(2007)
69Two O-star approaches
- 1. CAK-type
- ? Line force approximated
- ? v(r) predicted
- CAK,
Pauldrach (1986), Kudritzki (2002) - 2. Monte Carlo
- ? V(r) adopted
- ? Line force computed for all radii
- ? multiple scatterings included
- Abbott
Lucy (1985) -
Vink, de Koter Lamers (2000,2001)
70Advantages of our method
- Non-LTE
- Unified treatment (no core-halo)
- Monte Carlo line force at all radii
- Multiple scatterings
- ? O stars at solar Z low Z
- LBV variability WR as a function of Z
71The bi-stability Jump
- HOT
- Fe IV
- low dM/dt
- high V(inf)
- Low density
- COOL
- Fe III
- dM/dt 5 dM/dt HOT
- V(inf) ½ vinf HOT
- High density 10 HOT
72The reason for the bi-stability jump
- Temperature drops
- ? Fe recombines from Fe IV to Fe III
- ? Line force increases
- ? dM/dt up
- ? density up
- ? V(inf) drops
- ? Runaway
73Quantifying the effect of the velocity law
74Can we use our approach for WR stars?
- Potential problems
- Are these winds radiatively driven?
- Is Beta 1 a good velocity law?
- Do we miss any relevant opacities?
- What about wind clumping?
75B Supergiants Wind-Momenta
Vink, de Koter Lamers (2000)
76New Developments
- Hot Iron Bump Fe X --- Fe XVI
- Graefener Hamann (2005) can drive
- a WC5 star self-consistently
- ? Use Monte Carlo approach for a differential
study of Mass loss versus Z
77The bi-stability jump at B1
Lamers et al. (1995) Pauldrach Puls (1990)