Hand Tracking for Virtual Object Manipulation - PowerPoint PPT Presentation

About This Presentation
Title:

Hand Tracking for Virtual Object Manipulation

Description:

Hand Tracking for Virtual Object Manipulation Thibaut Weise Project Supervisor: Second Marker: Professor Guang-Zhong Yang Dr Duncan Gillies – PowerPoint PPT presentation

Number of Views:107
Avg rating:3.0/5.0
Slides: 33
Provided by: TheL58
Category:

less

Transcript and Presenter's Notes

Title: Hand Tracking for Virtual Object Manipulation


1
Hand Tracking forVirtual Object Manipulation
  • Thibaut Weise

Project Supervisor Second Marker
Professor Guang-Zhong Yang Dr Duncan Gillies
2
Motivation
  • Virtual and Augmented Environments
  • Robotic Control
  • Surgery
  • Space, Deep Sea

3
State of the Art
  • EM-Tracking
  • Acoustic Tracking
  • Data Glove
  • Optical

4
Optical Approaches
  • Appearance-based Approach
  • Model-based Approach
  • Reconstruct 3D Hand Model
  • Two methods
  • Minimize Model against Features
  • Reconstruct from Features

5
Requirements
  • Focus Grab Gesture
  • ?
  • Thumb and Index Finger
  • Real-time
  • Responsive
  • Accurate

6
System Overview
Calibration
Marker-based
Hand Tracking
Marker-less
Virtual Environment
7
Reconstruction
  • Triangulation
  • Requires Mapping between Pixels and 3D World
    Coordinates

8
Calibration
  • Optimize known World Coordinates against detected
    Image Coordinates
  • Planar Approach gt Chessboard
  • OpenCV Implementation
  • Stereo Optimization

9
Calibration Accuracy
  • Corner Detector Accuracy
  • Why sub-pixel accurate?

10
X-Corner Detector
  • Solution Improved X-Corner Detector

Saddle Point
Product of Eigenvalues minimised ?1?2
fxxfyy-fxy2 Gradient zero 0 fx s fxx t
fxy 0 fy s fxy t fyy Recalculate using
weighted derivatives of neighbourhood
11
Corner Detector Comparison
  • Solution Improved X-Corner Detector

12
Calibration Automation
  • Improved Chessboard Detector

13
Calibration Tool
14
Hand Tracking
  • Marker-based Marker-less

15
Marker Tracking
  • 3 Markers
  • Thumb, Index Finger and Hand
  • Uses Improved X-Corner Detector
  • Fast
  • Accurate
  • Simple

16
Hand Reconstruction
  • Find all potential Markers in Images
  • Match Points using Epipolar Constraints

17
Hand Reconstruction
  • Reconstruct all possible hand configurations
  • Different markers
  • Validate hand constraints

18
Hand Reconstruction
  • Use best match based on temporal information
  • Minimise Euclidean distance to predicted position

19
Hand Reconstruction
  • Initialisation based on Orientation Heuristic

20
Marker-less Tracking
  • 2 Fingertips
  • Reconstruct Hand Position
  • Hand Localisation
  • Skin Colour Detection

21
Hand Localisation
  • Background Subtraction
  • -
  • Skin Background

22
Hand Localisation
  • Find Hand Contour

23
Hand Reconstruction
  • Find Peaks
  • Calculate k-curvature
  • C(i)-C(i-k)TC(ik)-C(i)
  • Peaks where angle gt 0o and lt 90o

24
Hand Reconstruction
  • Match peaks using Epipolar Constraints ? find
    possible Finger Tips
  • Calculate Finger Axis

25
Hand Reconstruction
  • Reconstruct hand position
  • Validate hand constraints
  • Use best hand based on temporal information

26
Evaluation
  • Marker-based Marker-less

27
Virtual Environment
  • Virtual Tower of Hanoi
  • Virtual Hand gt Grabber
  • Fixed Dimensions
  • Grab and Push Objects
  • Perception
  • Colour Coding
  • Shadow

28
Implementation
Application Thread
Settings
Video / Tracking Thread
Draw / Settings
Hand Update
Virtual Environment
29
Demo
30
Conclusion
  • Accurate semi-automatic Calibration
  • Marker-based Tracking
  • Marker-less Tracking
  • Virtual Environment

31
Future Work
  • Marker-based Tracking
  • Handle Occlusion
  • Marker-less Tracking
  • Refine Skin Colour Detection
  • Use Gradient

32
Questions
?
  • Who wants to try?
Write a Comment
User Comments (0)
About PowerShow.com