Title: Geant4 Physics Validation
1Geant4 Physics Validation
Pablo Cirrone Giacomo Cuttone Francesco Di
Rosa Susanna Guatelli Alfonso Mantero Barbara
Mascialino Luciano Pandola Andreas Pfeiffer MG
Pia Giorgio Russo Paolo Viarengo Valentina
Zampichelli
- M.G. Pia
- On behalf of the LowE EM and Advanced Examples
- Working Groups
- http//www.ge.infn.it/geant4/lowE
Geant4 Space User Workshop Pasadena, 6-10
Novemver 2006
2Geant4 Toolkit
Wide set of physics processes and
models Versatility of configuration according to
use cases
How to choose the most appropriate model for my
simulation?
- Provide objective criteria to evaluate Geant4
physics models - Document their precision against experimental
data - Test all Geant4 physics models systematically
- Quantitative tests with rigorous statistical
methods
3Verification and Validationof Geant4 physics
- Verification
- compliance of the software results with the
underlying model - Unit tests (at the level of individual Geant4
classes) - Validation
- comparison against experimental data
- Quantitative estimate of the agreement between
Geant4 simulation and reference data through
statistical methods (Goodness-of-Fit)
A systematic, quantitative validation of Geant4
physics models against reference experimental
data is essential to establish the reliability
of Geant4-based applications
4Statistical Toolkit
- 2nd development cycle
- Released April 2006
- Whats new
- New tests
- ROOT User Layer
- New installation tools
- Performance analysis
The most complete software tool for 2-sample GoF
tests
5Geant4 Validation
- Atomic relaxation
- Bremsstrahlung
- Proton Bragg peak
- other validation activities in Advanced
Examples - Statistical Toolkit
- Common features of the validation activities
- Collaborative, open, transparent work environment
- Rigorous, quantitative analysis
- Publication-quality methods and results
K. Amako et al., Comparison of Geant4
electromagnetic physics models against the NIST
reference dataIEEE Trans. Nucl. Sci., Vol. 52,
Issue 4, Aug. 2005, pp. 910-918
6Geant4 Atomic Relaxation
- Geant4 Low Energy Electromagnetic package takes
into account the detailed atomic structure of
matter and the related physics processes - It includes a package for Atomic Relaxation
- Simulation of atomic de-excitation resulting from
the creation of a vacancy in an atom by a primary
process
- Geant4 Atomic Relaxation models
- Fluorescence
- Auger electron emission
- It is used by Geant4 packages
- Low Energy Electromagnetic
- Photoelectric effect
- Low Energy electron ionisation
- Low Energy proton ionisation (PIXE)
- Penelope Compton scattering
- Hadronic Physics
- Nuclear de-excitation
- Radioactive decay
These physics models are relevant to many diverse
experimental applications
7 Geant4 fluorescence
Original motivation from astrophysics requirements
Cosmic rays, jovian electrons
X-Ray Surveys of Asteroids and Moons
Solar X-rays, e, p
Geant3.21
ITS3.0, EGS4
Courtesy SOHO EIT
Geant4
Induced X-ray line emission indicator of target
composition (100 mm surface layer)
250 keV
C, N, O line emissions included
Wide field of applications beyond astrophysics
Courtesy ESA Space Environment Effects Analysis
Section
8Atomic Relaxation in Geant4
- Two steps
- Identification of the atomic shell where a
vacancy is created by a primary process
(photoelectric, Compton, ionisation) - The creation of the vacancy is based on the
calculation of the primary process cross sections
relative to the shells of the target atom - Cross section modeling and calculation specific
to each process - Generation of the de-excitation chain and its
products - Common package, used by all vacancy-creating
processes - Geant4 Atomic Relaxation
- Generation of fluorescence photons and Auger
electrons - Determination of the energy of the secondary
particles produced
9Modelling foundationin Geant4 Low Energy
Electromagnetic Package
- Calculation of shell cross sections
- Based on the EPDL97 Livermore Library for
photoelectric effect - Based on the EEDL Livermore Library for electron
ionisation - Based on Penelope model for Compton scattering
- Detailed atom description and calculation of the
energy of generated photons/electrons - Based on the EADL Livermore Library
10Validation of Geant4 Atomic Relaxation
- Previous partial validation studies
(collaboration with ESA) - Pure materials limited number of materials
examined - Complex materials complex experimental set-up,
large uncertainties on the target material
composition - Systematic validation project NIST database as
reference
Authoritative, systematic collection of
experimental data
11Method and tools
- Geant4 test code to generate fluorescence and
Auger transitions from all elements - Geant4 Atomic Relaxation handles 6 Z 100
- Selection of experimental data subsets from NIST
database - The NIST database also contains data from
theoretical calculations - Comparison of simulated/NIST data with
Goodness-of-Fit test - Data grouped for the comparison as a function of
Z according to the initial vacancy and transition
type - Statistical Toolkit (http//www.ge.infn.it/statist
icaltoolkit) - Kolmogorov-Smirnov test
- The result of the agreement is expressed through
the p-value of the test
12Fluorescence - Shell-start 1
Shell-end Kolmogorov-Smirnov D p-value
5 0.0188 1
6 0.0185 1
10 0.0172 1
13 0.0667 1
14 0.0588 1
18 0.0714 1
19 0.0714 1
E (keV)
? Geant4 ? NIST
Z
13Fluorescence - Shell-start 3
Shell-end Kolmogorov-Smirnov D p-value
10 0.0192 1
11 0.0175 1
13 0.0250 1
14 0.0256 1
18 0.0294 1
19 0.0312 1
21 0.1429 0.997085
22 0.0588 1
? Geant4 ? NIST
14Fluorescence - Shell-start 5
Shell-end Kolmogorov-Smirnov D p-value
8 0.0147 1
11 0.0435 1
13 0.0139 1
16 0.0204 1
19 0.0526 1
21 0.0196 1
24 0.0714 1
? Geant4 ? NIST
15Fluorescence - Shell-start 6
Shell-end Kolmogorov-Smirnov D p-value
8 0.0145 1
10 0.0588 1
11 0.0556 1
13 0.0182 1
14 0.0179 1
16 0.0200 1
18 0.0667 1
19 0.0556 1
21 0.0588 1
22 0.0500 1
? Geant4 ? NIST
16Auger electron emission
- Scarce experimental data in the NIST database
- Often multiple data for the same Auger
transition ambiguous reference - Analysis in progress comparison of Geant4
simulation data against the NIST subset of
experimental data - Preliminary results good qualitative agreement
as in the case of X-ray fluorescence - Rigorous statistical analysis to be completed,
will be included in publication
17Geant4 electron Bremsstrahlung
2 electromagnetic physics packages
Standard
Low Energy
3 Bremsstrahlung processes
G4eLowEnergyBremsstrahlung
G4eBremsstrahlung
Tsai
Tsai
2BN
2BS
angular distribution
angular distributions
G4PenelopeBremsstrahlung
18Validation of Geant4 EM physics
Ongoing large-scale project
NIST
Photon mass attenuation coefficient Range,
Stopping power (e, p, a)
K. Amako et al., IEEE Trans. Nucl. Sci. 52
(2005) 910
Atomic relaxation (fluorescence, Auger
effect) Proton Bragg peak Electron Bremsstrahlung
NSS 2006
Bremsstrahlung
Difficult to find reference data Thin/thick
target experiments Difficult to disentangle
effects (because of the continuous part)
1st validation cycle focus on low energy
19The experimental set-up
e- beam(70 keV-10 MeV) incident on a slab of
material
Photon (energy, ?)
Electrons and d-rays are absorbed Bremsstrahlung
photons can be transmitted
electrons
Z axis
Yield, Energy and Polar Angle of the emitted
photons
Secondary production threshold 0.5 mm
Statistical Toolkit Goodness-of-Fit test in
progress
Quantitatitative comparison of experimental -
simulated distributions
20Data sets
Preliminary results Work in progress!
N. Starfelt et al., Phys. Rev. 102 (1956)
1598 Thin target Be, Al, Au - 2.7, 4.5, 9.7
MeV Double differential cross sections
W.E. Dance et al., Journal of Appl. Phys. 39
(1968) 2881 Thick target Al, Fe 0.5, 1
MeV Double differential cross sections Integrated
g yield
R. Ambrose et al., NIM B 56/57 (1991)
327 Absolute and relative yield
21Double differential s at 2.7 MeV on thin (2.63
mg/cm2) Be target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
22Double differential s at 4.5 MeV on thin (2.63
mg/cm2) Be target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
23Double differential s at 9.7 MeV on thin (2.63
mg/cm2) Be target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
24Double differential s at 2.7 MeV on thin (0.878
mg/cm2) Al target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
25Double differential s at 2.7 MeV on thin (0.878
mg/cm2) Al target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
26Double differential s at 4.5 MeV on thin (0.878
mg/cm2) Al target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
27Double differential s at 9.7 MeV on thin (0.878
mg/cm2) Al target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
28Double differential s at 2.7 MeV on thin (0.209
mg/cm2) Au target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
29Double differential s at 4.5 MeV on thin (0.209
mg/cm2) Au target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
30Double differential s at 9.7 MeV on thin (0.209
mg/cm2) Au target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Energy (MeV)
Energy (MeV)
31Angular distribution
500 keV
W.E. Dance et al., Journal of Applied Physics 39
(1968) 2881
Ethr 46 keV
500 keV electrons on Al (0.548 g/cm2) and Fe
(0.257 g/cm2) Thick target experiment
Standard package
Red data Black simulation o ? Al ? ? Fe
Absolute comparison
32Angular distribution
500 keV
W.E. Dance et al., Journal of Applied Physics 39
(1968) 2881
precise agreement!
33Angular distribution
500 keV
W.E. Dance et al., Journal of Applied Physics 39
(1968) 2881
34Angular distribution
1 MeV
Same test for 1 MeV primary electrons (threshold
50 keV)
Standard package
W.E. Dance et al., Journal of Applied Physics 39
(1968) 2881
Targets Al (0.548 g/cm2) and Fe (0.613 g/cm2)
Red data Black simulation o ? Al ? ? Fe
Absolute comparison
35Angular distribution
1 MeV
W.E. Dance et al., Journal of Applied Physics 39
(1968) 2881
precise agreement!
Good agreement for Al - Reasonable also for Fe
(2BN)
36Angular distribution
1 MeV
W.E. Dance et al., Journal of Applied Physics 39
(1968) 2881
2BS good for Al and Fe (except in the backward
direction)
37Integral g yield
Total g yield on Al integrated on ? (0 ? p) and
on energy (Eth ? Emax)
Also available for other flavours of Geant4
Bremsstrahlung models
W.E. Dance et al., Journal of Applied Physics 39
(1968) 2881
o ? dat a ? ? simul.
Preliminary
Further investigation in progress
38Angular distributions
70 keV
Low Energy Package
Penelope Standard Low Energy (TSAI)
Penelope TSAI 2BS 2BN
Angle (deg)
Angle (deg)
Angular distribution of photons is strongly
model-dependent
39Energy distribution at 70 keV
Penelope Low Energy - TSAI
R. Ambrose et al., Nucl. Instr. Meth. B 56/57
(1991) 327
Intensity/Z (eV/sr keV)
photon direction
70 keV e-
45 deg
Photon energy (keV)
70 keV electrons impinging on Al (25.4 mg/cm2)
40Relative comparison at 70 keV
Low Energy - TSAI
Penelope
Intensity/Z (eV/sr keV)
Intensity/Z (eV/sr keV)
Photon energy (keV)
Photon energy (keV)
Relative comparison (45 direction) Shapes of
the spectra are in good agreement
41K. Amako et al., Comparison of Geant4
electromagnetic physics models against the NIST
reference dataIEEE Trans. Nucl. Sci., Vol. 52,
Issue 4, Aug. 2005, pp. 910-918
- Adopt the same method also for hadronic physics
validation - address all modeling options
- start from the bottom (low energy)
- progress towards higher energy based on previous
sound assessments - statistical analysis of compatibility with
experimental data - Guidance to users based on objective ground
- not only educated-guess PhysicsLists
Statistical Toolkit Goodness-of-Fit test
Quantitatitative comparison of experimental -
simulated distributions
42Proton Bragg peak
- Compare various Geant4 electromagnetic models
- Assess lowest energy range of hadronic
interactions - elastic scattering
- pre-equilibrium nuclear deexcitation
- to build further validation tests on solid ground
- Results directly relevant to various experimental
use cases
43Relevant Geant4 physics models
Hadronic
Electromagnetic
- Parameterized (Ã la GHEISHA)
- Nuclear Deexcitation
- Default evaporation
- GEM evaporation
- Fermi break-up
- Pre-equilibrium
- Precompound model
- Bertini model
- Elastic scattering
- Parameterized models
- Bertini
- Intra-nuclear cascade
- Bertini cascade
- Binary cascade
- Standard
- Low Energy ICRU 49
- Low Energy Ziegler 1977
- Low Energy Ziegler 1985
- Low Energy Ziegler 2000
- New very low energy models
Subset of results shown here Full set of results
in publication coming shortly
44Experimental data
- CATANA hadrontherapy facility in Catania, Italy
- high precision experimental data satisfying
rigorous medical physics protocols - Geant4 Collaboration members
Validation measurements Markus Ionization chamber
45Geant4 simulation
Accurate reproduction of the experimental
set-up This is the most difficult part to achieve
a quantitative Geant4 physics validation Geometry
and beam characteristics must be known in detail
and with high precision
Ad hoc beam line set-up for Geant4 validation to
enhance peculiar effects of physics processes
Eproton 63.5 MeV sE 300 keV
46Electromagnetic processes
- Electromagnetic options
- Standard EM
- Low Energy EM ICRU 49
- Low Energy EM Ziegler 1977
- Low Energy EM Ziegler 1985
- Low Energy EM Ziegler 2000
47Electromagnetic processes
Standard EM
- Standard EM p, ions, g, e- e
1 M events
p-value p-value p-value
CvM KS AD
Left branch 0.418
Right branch 0.736
Whole curve 0.438
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
48Electromagnetic processes
LowE EM ICRU49
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
1 M events
p-value p-value p-value
CvM KS AD
Left branch 0.530
Right branch 0.985
Whole curve 0.676
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
49Electromagnetic processes
LowE EM Ziegler 1977
- Low Energy EM Ziegler 1977 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
1 M events
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
50Electromagnetic processes
LowE EM Ziegler 1985
- Low Energy EM Ziegler 1985 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
1 M events
Subject to further investigation
Geant4 Experimental data
mm
51Electromagnetic processes
LowE EM Ziegler 2000
- Low Energy EM Ziegler 2000 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
1 M events
Subject to further investigation
Geant4 Experimental data
mm
52Electromagnetic processes Summary
p-value p-value p-value
LowE ICRU49 LowE Ziegler 1977 Standard
Left branch (CvM) 0.530 0.418
Right branch (KS) 0.985 0.985 0.736
Whole curve (AD) 0.676 0.438
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
53Electromagnetic processes Elastic scattering
- Elastic scattering options
- HadronElastic process with LElastic model
- HadronElastic process with BertiniElastic model
- UHadronElastic process with HadronElastic model
54EM Elastic scattering
LowE EM ICRU49
LElastic
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
- HadronElastic with LElastic
1 M events
p-value p-value p-value
CvM KS AD
Left branch 0.522
Right branch 0.985
Whole curve 0.697
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
55EM Elastic scattering
LowE EM ICRU49
HadronElastic
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
- UHadronElastic with HadronElastic
0.5 M events
p-value p-value p-value
CvM KS AD
Left branch 0.490
Right branch 0.735
Whole curve 0.669
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
56Electromagnetic processes Elastic
scatteringHadronic inelastic scattering
- Hadronic Inelastic options
- Precompound with Default Evaporation
- Precompound with GEM Evaporation
- Precompound with Default Evaporation Fermi
Break-up - Bertini
57EM hadronic physics
LowE EM ICRU49
LElastic
Precompound default
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
- HadronElastic with LElastic
- Precompound with Default Evaporation
1 M events
p-value p-value p-value
CvM KS AD
Left branch 0.836
Right branch 0.985
Whole curve 0.946
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
58EM hadronic physics
Standard EM
LElastic
Precompound default
- Standard EM p, ions, g, e- e
- HadronElastic with LElastic
- Precompound with Default Evaporation
1 M events
p-value p-value p-value
CvM KS AD
Left branch 0.648
Right branch 0.760
Whole curve 0.666
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
59EM hadronic physics
LowE EM ICRU49
HadronElastic
Precompound default
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
- UHadronElastic with HadronElastic Precompound
with Default Evaporation
0.5 M events
p-value p-value p-value
CvM KS AD
Left branch 0.973
Right branch 0.985
Whole curve 0.982
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
60EM hadronic physics
LowE EM ICRU49
LElastic
Precompound with GEM Evaporation
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
- HadronElastic with LElastic
- Precompound with GEM Evaporation
0.5 M events
p-value p-value p-value
CvM KS AD
Left branch 0.667
Right branch 0.985
Whole curve 0.858
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
61EM hadronic physics
LowE EM ICRU49
LElastic
Precompound with Fermi Break-up
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
- HadronElastic with LElastic
- Precompound with Fermi Break-up
0.5 M events
p-value p-value p-value
CvM KS AD
Left branch 0.814
Right branch 0.985
Whole curve 0.945
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
62EM hadronic physics
LowE EM ICRU49
LElastic
Bertini Inelastic
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
- HadronElastic with LElastic
- Bertini Inelastic
1 M events
p-value p-value p-value
CvM KS AD
Left branch 0.790
Right branch 0.985
Whole curve 0.936
Geant4 Experimental data
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
mm
63EM hadronic physics
LowE EM ICRU49
BertiniElastic
Bertini Inelastic
- Low Energy EM ICRU49 p, ions
- Low Energy EM Livermore g, e-
- Standard EM e
- HadronElastic with BertiniElastic
- Bertini Inelastic
0.5 M events
p-value p-value p-value
CvM KS AD
Left branch 0.977
Right branch 0.985
Whole curve 0.994
CvM Cramer-von Mises test KS
Kolmogorov-Smirnov test AD Anderson-Darling
test
Geant4 Experimental data
mm
64Electromagnetic Hadronic Summary
p-value p-value p-value p-value p-value p-value p-value
Standard LElastic Precompound LowE ICRU49 LElastic Precompound GEM LowE ICRU49 LElastic Bertini Inelastic LowE ICRU49 LElastic Precompound Fermi Break-up LowE ICRU49 LElastic Precompound LowE ICRU49 HadronElastic Precompound LowE ICRU49 Bertini Elastic Bertini Inelastic
Left branch (CvM) 0.648 0.667 0.790 0.814 0.836 0.973 0.977
Right branch (KS) 0.760 0.985 0.985 0.985 0.985 0.985 0.985
Whole curve (AD) 0.666 0.858 0.936 0.945 0.946 0.982 0.994
- Precise electromagnetic physics
- Good elastic scattering model
- Good pre-equilibrium model
Key ingredients
65and behind everything
Unified Process
A rigorous software process Incremental and
iterative lifecycle RUP? as process framework,
tailored to the specific project Mapped onto ISO
15504
66Conclusion
- Geant4 physics validation carried on by a small,
young team with rigorous methods - Underlying vision
- Systematic approach
- Rigorous statistical analysis for quantitative
characterization of Geant4 physics - Current projects
- Atomic relaxation final results
- Bremsstrahlung preliminary results
- Proton Bragg peak mature stage, refinements by
end 2006 - Publications coming soon